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ABSTRACT 

MOLECULAR CLONING AND ANALYSIS OF THE PROMOTER FOR RAT 
HEPATIC NEUTRAL CHOLESTEROL ESTER HYDROLASE 

By Ramesh Natarajan, Ph.D. 

A dissertation submitted in partial fulfil lment of the requirements for the degree of 
Doctor of Philosophy at V irginia Commonwealth University. 

V irginia Commonwealth University, 1 997. 

Major Director: W. McLean Grogan, Professor, Department of B iochemistry and 
Molecular B iophysics 

Neutral cholesterol ester hydrolase (CEH) is a key enzyme in regulating hepatic 

free cholesterol. Using the CEH specific eDNA sequence in the 5' -untranslated region as 

a primer, 1 . 3 kb of sequence upstream of the ATG init iation codon was ampl ified and 

cloned. Primer extension analysis with total RNA from rat primary hepatocytes 

identified a transcription init iation site, 60 bases upstream from the init iation codon. No 

typical TAT A-box sequences were found upstream from the transcription start site. 

However, a consensus GC-box, which can bind the positive transcription factor SP I, was 

found 35 bases upstream from the transcription start site. In addit ion the promoter also 

contained several hormone responsive half elements, sterol response elements, ubiquitous 

transcription factor binding sites and liver specific elements. 
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To determine the promoter activity of the rat CEH gene, the 1 .3 kb of 5' -flanking 

region was fused to a luciferase reporter gene. Smaller 5' -deletion constructs were 

obtained by generation of unidirectional nested deletion breakpoints in the fu ll- length 

construct with Exonuclease III. Basal promoter activity, as well as transcriptional 

regulation by hormones, signal transduction pathways and agents perturbing cholesterol 

metabolism were studied in human hepatoblastoma HepG2 cells and cultured primary rat 

hepatocytes by transient transfection assays of the promoter activity of the deletion 

constructs. Functional glucocorticoid response elements, phorbol ester responsive 

sequences and sterol responsive sequences were mapped with both the culture systems. 

Results indicate that the first 599 base pairs upstream of the initiation codon and the 

region between nucleotides - 1 3 1 7 and - 1 1 90 regulate the effects of various physiological 

stimuli .  The effects of various stimuli used in this study were similar in the two cell 

lines. The rat CEH gene appears to be finely regulated by distinct signals converging to 

consensus promoter regulatory sequences. 
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INTRODUCTION 

Cholesterol ester hydrolases (CEH) are a family of ubiquitous enzymes that are 

found in many organisms. In mammals they occur in many tissues and are associated 

w ith different functions, depending on location. They have been found in l iver (Deykin 

and Goodman , 1 962) , pancreas (Calame et al, 1 975),  adrenals (Trzeciak and Boyd , 

1 974 ) ,  testis (Durham and Grogan, 1 982), intestine (Gallo et al, 1 980), mammary glands 

(Martinez and Botham, 1 990) , placenta (Chin and Morin , 1 97 1  ), brain (Eto and Suzuki, 

1 972) ,  adipose tissue (Pittman et al, 1 975),  macrophages (Small et al, 1 989),  artery 

(Hajjar et al, 1 983) and corpus luteum (Cook et al, 1 983) ,  where they catalyze the release 

of free cholesterol and fatty acids from cholesteryl esters, an intracellular storage form o f  

cholesterol. Mult ip le forms o f  CEH have been reported i n  testis (Durham and Grogan , 

1 984 ) ,  brain (Eto and Suzuki, 1 972), adrenals (Pittman and Steinberg, 1 977) and l iver 

(Deykin and Goodman, 1 962; Nilsson, 1 976). They have been identified in different sub

cellular organelles including cytosol (Deykin and Goodman, 1 962), lysosomes (Lundberg 

et al, 1 990), endoplasmic reticulum (Gandarias et al, 1 987), mitochondria (Deykin and 

Goodman, 1 962) and nuclei (Deykin and Goodman, 1 962). Whi le the pancreatic and 

intestinal CEH' s  have a digestive role, the CEH in adipose tissues and steroidogenic 

organs provide substrate for steroidogenesis. The lysosomal CEH on the other hand 

hydrolyses cholesteryl and glyceryl esters during lipoprotein degradation. Although rat 
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l iver contains both lysosomal and microsomal CEH activities, the major hydrolytic 

activity is associated with a unique cytosolic cholesterol ester hydrolase that is 

appropriately located, rationally regulated and is capable of mobilizing free cholesterol 

from cholesteryl ester stores (Natarajan et al, l 996a) . However, because most of the 

research to date has focussed on the bi le salt-stimulated cholesterol esterase found 

initially in the pancreas and the hormone sensitive l ipase I cholesterol esterase found in 

steroidogenic t issues, I will  briefly review these enzymes prior to discussing the 

properties of the hepatic cytosolic CEH. 

Bile salt-stimulated cholesterol esterase 

The bile salt stimulated cholesterol esterase has been purified fro m  many different 

sources including rat and human pancreatic juice (Gallo, 1 98 1 ;  Lombardo et al, 1 978) ,  

pancreas from different species (Wang, 1 988;  Jacobson et al, 1 990; Rudd et al, 1 987), rat 

l iver (Camul l i  et al, 1 989) and human milk (Rudd and Brockman, 1 984; Wang and 

Hartsuck, 1 993) . This enzyme has a broad substrate specificity. In addition to the 

hydrolysis of cholesteryl esters, the enzyme is capable of hydrolyzing mono-, di-, and 

triacylglycerol, phospholipids, and esters of fat-soluble vitamins. Enzyme activity 

against these substrates can be activated several fo ld by bile salt, with the trihydroxylated 

bile salts being more potent than their dihydroxylated counterparts (Hernell and 

Olivecrona, 1 974; Blackberg and Hernell, 1 993) . This enzyme can also hydrolyze 

lysophospholipid (Han et al, 1 987). However, this activity is bile salt-independent. The 

bile salt-stimulated cholesterol esterase has also been demonstrated to have l ipoamidase 

act ivity (Hui et al, 1 993). Han et al were the first to report the primary sequence of this 
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protein, based on isolation and cloning o f  a 2 kb full-length transcript from rat pancreas. 

Hui et al used an independent approach, based on immunoreactivity, partial protein 

sequencing , and cloning of the eDNA to confirm identity between the pancreatic 

lysophopholipase and cholesterol esterase. The sequence o f  bile salt-stimulated lipase 

found in milk was also shown to be identical to the pancreatic cholesterol esterase (Hui 

and Kissel, 1 990; N ilsson et al, 1 990) , thereby establishing the identity between these 

proteins. The cholesterol esterase sequence displays a high degree of homology with 

other serine esterases, such as acetylcholinesterase and cholinesterase. These proteins 

contain the catalytic triad serine-histidine-acidic residue at simjlar locations o f  the 

protein. 

The complete sequence of the bi le salt-stimulated cholesterol esterase gene has 

been determined in the rat (Fontaine et al, 1 99 1  ), and partial sequences with intron-exon 

junctions have been reported for both the human and the mouse cholesterol esterase gene 

(Lidmer et al, 1 995 ;  Lidberg et al, 1 992). Both the rat and the mouse cholesterol esterase 

genes are single copy genes in their respective genomes , spanning approximately 7 kb. 

The human gene is approximately 9 kb in length, and is present in the human genome 

along with a cholesterol esterase- like gene. The 5' flanking region of the cholesterol 

esterase gene shares several homologous domains with that of the pancreatic lipase gene 

(Mickel et al, 1 989).  There are 5 distinct sequences each spanning at least I 0 residues, 

that are similar between the cholesterol esterase and pancreatic lipase genes. S ince the 

pancreatic l ipase has a key role in dietary lipid absorption, it has been suggested that the 

cholesterol esterase synthesized by the pancreas may be involved in a s imilar process. 
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The 5' flanking region also contains consensus sequences for pancreas specific enhancer 

elements (Fontaine et al, 199 1 ;  Lidberg et al, 1 992), a tissue-specific mammary g land 

factor recognition sequence (Lidberg et al, 1 992) and an I I  bp conserved sequence 

present in a number of milk protein genes (Lidberg et al, 1 992) such as lactalbumin and 

casein. This consensus sequence may be responsible for cholesterol esterase gene 

expression in lactating mammary g lands. 

In addition to transcriptional regulat ion, cholesterol esterase biosynthesis is also 

regulated post-transcript ional ly in response to gastric hormones like cholecystokinin, 

secretin and bombesin. The hormone-induced cholesterol esterase biosynthesis is not 

dependent on de novo RNA synthesis and does not alter the level of cholesterol esterase 

mRNA (Huang and Hui, 1 99 1  ) .  Instead hormonal treatment increases translational 

efficiency of the cholesterol esterase mRNA. The hormone-induced cholesterol esterase 

biosynthesis is mediated via calcium mobilization and protein kinase C-dependent 

mechanisms (Brodt-Eppley and Hui,  1 995). 

Disruption of the cho lesterol esterase gene m knockout experiments 

abolished cholesterol esterase activity in the intestinal tract. However, while cholesterol 

absorption efficiency was unaffected, the absorption of cho lesteryl esters was 

dramatical ly decreased in the cho lesterol esterase knockout mice (Howles et al, 1 996), 

suggesting that cholesterol esterase is not involved in the cholesterol absorption process 

but is only important for the absorption of substrates with carboxy lester bonds. 

Hormone sensitive lipase 

Hormone sensitive l ipase (HSL) is another enzyme with high cho lesterol esterase 
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activity.  Although this protein was originally isolated based on its abi l ity to hydrolyze 

triglyceride, subsequent characterizat ion of the protein revealed its abi l ity to hydrolyze 

cholesteryl esters w ith equal e fficiency. The HSL is most abundant in adipose tissue, 

heart, skeletal muscle and in steroidogenic tissues such as the adrenals ,  ovary and testes. 

In contrast to the bile salt-stimulated cholesterol esterase, which requires direct 

interaction of the bi le salt with the enzyme for activation, bi le salt is not a required 

cofactor for HSL. 

The primary structure of HSL was deduced by cloning and sequencing of the 

eDNA, from both rat and human adipose tissue (Holm et al, 1 988; Lombardo et al, 

1993). The HSL contains within its sequence the GXSXG motif, a characteristic of other 

serine esterases and lipases. However, the histidine and acidic amino-acid residue in the 

catalyt ic triad have yet to be identified. 

As the name impl ies, the HSL hydrolytic activity is stimulated by l ipolyt ic 

hormones such as catecholamines. The mechanism o f  action is through cAMP-dependent 

protein kinase-mediated phosphorylation of a serine residue (Holm et al, 1 988). In 

contrast, the inactivation of  the HSL by anti-lipolytic hormones, such as insu lin, is 

indirect through lowering of the cAMP level by a cAMP phosphodiesterase. 

The HSL gene spans approximately I 0 kb and contains 9 exons (Lang in et al, 

1 993). The intron-exon organization of the HSL gene resembles that of the bile salt-

stimulated cholesterol esterase, with each exon encoding a key functional domain of the 

protein. The 5' flanking region of the mouse HSL gene has adipose tissue speci fic 

elements (Rice et al, 1 990) and an element responsible for protamine I gene expression 
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m the testes (Tamura et al, 1992). The presence o f  the consensus sequences in the 

regulatory region of the HSL gene is consistent with its expression m these t issues. 

Consensus sequences for Ets- 1 and Pu. I are also present, suggesting that these may 

represent cis-acting elements responsible for monocyte/macrophage expression o f  this 

gene ( Kiemsz et al, 1 990). In addition, a preadipocyte repressor element (Swick and 

Lane, 1992) and sterol regulatory element- ! sequences (Goldstein and B rown, 1 990) are 

also present. 

Although HSL activity I immunoreactivity was originally found in the adipose 

tissue, it has been shown to be present in the heart, skeletal muscle, adrenals, ovaries, 

p lacenta and in some macrophage cell lines (Kraemer et al, 1 993). It has been proposed 

that the HSL in adipose tissue, skeletal muscle and heart serves as a triacylglycerol lipase 

in supply ing fatty acids to these tissues. On the other hand, its role in ovaries and 

adrenals may be related to its cholesteryl ester hydrolytic activity and it possibly 

mobilizes cholesteryl ester stores for steroid biosynthesis. HSL is also found in the testes 

where it is expressed in a stage-dependent manner, coinciding w ith the onset of  

spermatogenesis. Testicular expression of  the gene was localized to  Sertol i  cells instead 

o f  the Leydig cells (Holst et al, 1994), suggesting that the role o f  this protein in the testis 

is most likely related to mobilization of lipid droplets in Sertoli cells rather than for 

steroid biosynthesis in Leydig cells. As mentioned be fore, the HSL is also found in 

several mouse macrophage cell l ines. The functional signi ficance for macrophage 

expression o f  the HSL is speculated to be the hydrolysis o f  cholesteryl esters liberating 

free cholesterol for efflux from the cells (Khoo et al, 1 98 1; Small et al, 1 989). Based on 
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these observations, the importance of this enzyme tn dictating macrophage foam cell 

formation and in athergenesis has been postulated. 

Cytosolic Cholesterol Ester Hydrolase : Isolation and cloning 

The cytosolic CEH represents the major regulated cholesterol ester hydrolytic 

activity in rat liver. Conventional protein purification procedures have been used in this 

laboratory to purify this hepatic CEH from rat livers (Ghosh and Grogan, 1 99 1). The 

enzyme was purified 1 2,600 - fo ld by ammonium sulfate precipitation, cation exchange 

chromatography and gel permeat ion high pressure l iquid chromatography w ith an overall 

yield of 20%. The identity of this enzyme has been a controversy for over a decade. 

Gallo et al first suggested that hepatic CEH is different from the pancreatic CEH, by 

showing that antibodies to pancreatic CEH did not cross react with hepatic CEH. But 

Harrison et al reported that the anti-pancreatic CEH antibodies (supplied by Gallo) could 

inhibit 72% of hepatic CEH activity and therefore suggested identity between these 

enzymes. Camul l i  et al isolated a liver protein using anti-pancreatic CEH antibodies on 

an antibody affinity column.  However this protein had properties different from the 

hepatic CEH. Kissel et al then cloned the eDNA for rat pancreatic CEH and 

demonstrated the presence of corresponding RNA in rat liver. However the CEH purified 

by Ghosh and Grogan ( 199 1 )  differs from the pancreatic CEH in several ways. This 

hepatic CEH has orders of magnitude greater total activity than pancreatic CEH, is 

protein kinase A activated, is bile salt independent and has no cross reactivity w ith ant i-

pancreatic CEH antibodies. Also a specific neutralizing antibody to hepatic CEH 

generated in this laboratory cross reacted only weakly w ith pancreatic CEH on Western 
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blots (Ghosh and Grogan , 1992). More recently a 1 923 bp eDNA for rat hepatic CEH 

was cloned by screening a rat l iver lambda gt I I  eDNA l ibrary with an end-labelled 

synthetic o ligonucleotide derived from the conserved active site sequence of rat and 

human pancreatic cholesterol esterase and human milk bile salt stimulated l ipase (Ghosh 

et al, 1995). This eDNA hybridized to a single strong 2.3 kb band on Northern blots o f  

rat l iver mRNA and included an open reading frame coding for 565 amino acids, 

corresponding to a protein of molecular weight 62 143 (unglycosylated), consistent with 

the 66 kDa mobility of rat liver CEH on SDS-PAGE. The eDNA sequence for hepatic 

CEH has only 44% homo logy with pancreatic CEH, whereas the predicted amino acid 

sequence has only 3 1 % identity. The identity of the eDNA obtained with the puri fied 

CEH was demonstrated by immunoreactivity of ant ibodies to hepatic CEH with the 

fusion protein produced by the recombinant phage and w ith protein expressed in a 

prokaryotic expression system, and also by production o f  h igh levels o f  hepatic CEH 

activity and a 66 kDa immunoreactive protein in COS cells trans fected with an 

expression vector containing the fu ll- length eDNA (Ghosh et al, 1995). 

Characterization of hepatic cytosolic CEH 

The purified hepatic CEH exhibited activity over the pH range 5.0 - 9.0 with 

optimal activity at pH 7.0 to 7.5 (Ghosh and Grogan, 199 1 ). The purified enzyme eluted 

as a single peak from a FPLC chromatofocussing column corresponding to a pi value o f  

5.5 (Ghosh and Grogan , 1 99 1  ) .  As mentioned earlier, hepatic CEH i s  activated by 

cAMP-dependent protein kinase (PKA) and also by ci+- phospholipid dependent protein 

kinase (PKC).  Thus, CEH is regulated by reversible phosphorylation, with the 
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phosphorylated form being the more active form (Ghosh and Grogan, 1 989). Whereas 

the cytosolic enzyme is bile salt independent, the purified enzyme is activated by 

increasing taurocholate concentrations up to I mM. The activation remained more or less 

constant up to I 0 mM and then declined with further increases in concentration (Ghosh 

and Grogan, 1 99 1  ). Purified hepatic CEH is strongly inhibited by 20 - 40 mM 

taurocholate in marked contrast to the pancreatic CEH which is known to be activated by 

bile salts in this concentration range. While the purified CEH requires a minimal level of 

taurocholate (0.25 mM) to prevent aggregation of the enzyme to an inactive state, bile 

salts can also modify the physical state of the substrate. The purified enzyme hydrolyzes 

oleoyl esters of both cholesterol and glycerol, although the activity was consistently 

higher with cholesteryl o leate than w ith triolein at all taurocholate concentrations 

(Natarajan, et al, 1 996a). With cholesteryl oleate as a substrate, enzyme activity rapidly 

increased between 2.5 - 6 .5 f..iM and gradually increased thereafter with further increases 

up to 300 f..iM. Thus, typical of enzymes with insoluble substrates, this CEH did not 

saturate with substrate within the range of feasible substrate concentrations. The activity 

of purified CEH is also independent of divalent metal ions like Zn+2, Cu+2 and Cd+2 . 

However these cations were mildly inhibitory at one or more concentrations from I -

1 000 f..iM (Natarajan et al, 1 996a). 

CEH belongs to the family of serine esterases which are characterized by the 

presence of a conserved catalytic triad (serine, histidine and an acidic residue). Simi lar to 

other cholesterol esterases, purified CEH was inhibited by phenylmethylsulfonylfluoride 

(PMSF), with 50% inhibition at 0. 1 mM PMSF (Natarajan et al, 1 996a). This is 
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consistent with the identification o f  the consensus serine esterase active site. The 

sulfhydryl specific agent mercury benzoate, inhibited the enzyme activity 30% at 3 mM 

(Natarajan et al, 1 996a). Inasmuch as iodoacetamide and N-ethylmaleimide affected a 

modest activation, inhibition by Hg +2 probably reflects a general effect of divalent 

cations, rather than an interaction with an essential sulfhydryl group. Since CEH 

catalyzes the hydrolysis of uncharged esters and is inh ibited by Cu+2 and Hg+2, but not by 

iodoacetamide, it has the properties of a class A esterase, as described by Aldridge, 1 953 .  

In addition to  its abi l ity to  hydrolyze physiologically relevant substrates like cholesteryl 

oleate and triolein, this cytosolic CEH can also hydrolyze paranitrophenyl (PNP)- esters 

of fatty acids. While esterases like l ipoprotein lipase and pancreatic CEH can efficiently 

hydrolyze the water soluble substrate PNP-acetate, hepatic CEH demonstrated the lowest 

activity towards this substrate. Activity increased with chain length, peaked with the 

more lipophil ic PNP-caprylate and then declined gradually with increasing chain length > 

C8 (Natarajan et al, 1 996a) . However hydrolytic act ivity was consistently higher with the 

more lipophil ic esters than with PNP-acetate. 

Serine esterases such as lipoprotein lipases and hepatic lipase have highly variable 

trypsin- labile loop structures formed by disulfide bridges, which confer substrate binding 

specificity. Trypsin cleavage at a specific site in this loop abolishes lipoprotein lipase 

activity with triolein but not with more hydrophil ic tributyrin.  Mild trypsin digestion of 

the purified CEH results in progressive and selective loss of activity with cholesteryl 

oleate and triolein, but not with more hydrophi l ic PNP-caprylate. Analysis of CEH by 

SDS-PAGE after 24 hrs. of trypsin digestion revealed only a single band at 66 kDa, 
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indistinguishable from the mobility of the unmodified protein (Natarajan et al, 1 996a). 

By analogy with l ipoprotein l ipase, this is consistent with the cleavage of a single peptide 

bond within a loop domain which confers substrate specificity on CEH. Analysis of 

secondary structure for CEH by the GCG program (PEPTIDESTRUCTURE),  using 

algorithms for hydrophilicity (Kyte-Doolittle), surface probabil ity  (Emini) ,  chain 

flexibil ity ( Karplus-Schulz) and secondary structure (Chou-Fasman and Garnier

Osguthorpe-Robson) ,  predicts such a loop between Cys87 and Cys116, containing a highly 

exposed trypsin cleavage site at Arg104. This site has a high hydrophil icity index (2.4), a 

high surface probabil ity (5 .8)  and a predicted turn. 

The hepatic cytosolic CEH is also developmentally regulated in the rat. In male 

rats, age-related differences in mRNA, protein mass and catalytic activity suggest 

transcriptional regulation and indicate an important role for CEH in cholesterol 

homeostasis in the developing rat (Natarajan et al, 1 996). On the other hand, in female 

rats it appears that hepatic CEH is subject to gender-specific multivalent regulation by 

post-translational mechanisms (Natarajan et al, 1 997). 

Regulation of cholesterol homeostasis in the liver 

As mentioned before, CEH releases free cholesterol from cholesteryl esters. Free 

cholesterol is an important structural component of cellular membranes. It has profound 

effects on physical properties of membranes, as well as membrane associated activities 

including enzymes and receptors involved in cholesterol metabolism and homeostasis 

(Liscum and Underwood, 1 995). This free cholesterol is not evenly distributed among 

the various membrane classes. While plasma membranes are relatively rich in 
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cholesterol, the endoplasmic reticulum has much lower cholesterol concentrations. The 

mechanisms required to maintain this gradient are not well understood as yet. 

Hepatic free cholesterol pools play important roles in the regulation of receptor 

mediated uptake of cholesterol, in the de novo biosynthesis of cholesterol, in bile acid 

synthesis, in the esterification of free cholesterol and in the hydrolysis of stored 

cholesteryl esters. Intracellu lar levels of free cholesterol are maintained relat ively  

constant over a broad range of  metabolic states and cholesterol fluxes through the l iver 

(Gould, 1 977;  Klauda et al, 1 978; Erickson et al, 1 980). While de novo cholesterol 

biosynthesis and uptake of dietary cholesterol as lipoproteins are the two input pathways 

for cholesterol, conversion of hepatic cholesterol to bile acids and bil iary secretion of 

cholesterol are the only significant output pathways (Fig. I). In response to cholesterol 

influx or efflux, sterol balance in the hepatocyte is maintained by altering the flux  of 

cholesterol through I) endogenous cholesterol biosynthesis regulated by 3-hydroxy-3-

methylglutaryl-coenzyme A synthase (HMGCoAS) and the rate limit ing enzyme 3-

hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoAR), 2) lipoprotein uptake, 

synthesis and secretion which is part ly regulated by the low density l ipoprotein (LDL) 

receptor, 3) conversion of cholesterol to bile acids which is regulated by sterol-27-

hydroxylase and the rate limiting enzyme cholesterol-7a-hydroxylase (C7H) and 4) 

reversible conversion of excess cholesterol to cholesteryl esters by 

acylcoenzymeA:cholesterol acyltransferase (ACAT) and hydrolysis of stored cholesteryl 

esters to free cholesterol by CEH. 

Regulation of the LDL receptor and the other enzymes HMGCoAS, HMGCoAR, 
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Figure I .  Regulation of cholesterol homeostasis in the rat liver. This figure shows the 
input and output pathways involved in the regulation of cholesterol homeostasis in the rat 
l iver as described in the text. 
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C7H, stero l-27-hydroxylase and ACAT have been studied i n  considerable detail .  

HMGCoAS, HMGCoAR and the LDL receptor are actively regulated by transcriptional, 

translational and post-translational modes (Goldstein and Brown, 1 990). C7H is 

primarily regulated at the transcriptional level (Spady and Cuthbert, 1 992) . There is 

some controversy regarding the ident ity of ACAT and its regulatory mechanisms are as 

yet unclear. While a detailed explanation of the regulation of these enzymes is beyond 

the scope of this dissertation, it is useful to review their regulation at the transcriptional 

level .  

The promoters for the LDL receptor (Osborne et al, 1 988),  HMGCoAS (Smith et 

al, 1 988)  and HMGCoAR (Dawson et al, 1 988) have been identified and characterized. 

They are regulated through sterol regulatory elements (SRE- 1 )  in their promoters that 

behave as conditional positive or conditional negative regulators of transcription when 

bound by the sterol regulatory element binding protein (SREBP). The details of this 

process are described in the following section. The C7H promoter has also been 

identified and characterized (Jelinek and Russell, 1 990; Nishimoto et al, 1 99 1 ; Chiang et 

al, 1 992). No SRE ' s  have yet been found in the C7H promoter. However the gene is 

regulated by different physiological stimuli including bile acids, hormones and signal 

transducing agents (Crestani et al, 1 994; Chiang and Stroup, 1 994; Crestani et al, 1 995). 

While an ACAT eDNA has recently been identified, no information is available on its 

promoter (Chang et al, 1 993). 

Another common mode of regulation is the short-term regulation of HMGCoAR, 

C7H, ACAT and CEH by reversible phosphorylation. In contrast to HMGCoAR which 



www.manaraa.com

1 6  

is inhibited by phosphorylation and activated by dephosphorylat ion, the activities of C7H 

and ACAT are increased by in vitro phosphorylation (Gavey et al, 1 983; Goodwin et al, 

1 982; Beg et al, 1 987). As mentioned before, CEH is also regulated by reversible 

phosphorylation and the phosphorylated form is the active form. Based on these 

observations there appears to be a coordinated control of the enzymes involved in 

regulation of cholesterol homeostasis in the l iver by reversible phosphorylation. Under 

conditions of increased phosphorylation in the cell, HMGCoAR would be inh ibited and 

the free cholesterol pools would be depleted due to increased activit ies of ACAT and 

C7H. CEH, which is more active in the phosphorylated state, would then be important in 

maintaining the free cholesterol level in the cell .  However, a mechanism by which 

cellular cholesterol levels might affect the phosphorylation status of the various enzymes 

has not been demonstrated. 

Unl ike free cholesterol, the levels of intracellular cholesteryl esters vary greatly 

with rates of influx and efflux of cholesterol from the liver. They serve as an inert 

storage pool that is capable of absorbing considerable amounts of cholesterol. Since the 

physical properties of cholesteryl esters are not conducive to the formation of membrane 

bi layers, their concentration in membranes is very low. Therefore, most cholesteryl 

esters are incorporated into lipoproteins or triglyceride rich cytoplasmic droplets. These 

cytoplasmic droplets serve as substrates for CEH and provide a reservoir for mobil ization 

of cholesteryl ester stores. 

Promoters and control of gene expression 

The DNA of a cell has information responsible for the maintenance of that cell 
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and ult imately the entire organism. Genetic information is first transcribed by RNA 

polymerase and then translated into the finished protein product. Cells have developed 

complex systems to regulate these processes at every step. Transcription initiation is a 

complex process involving both protein:DNA and protein:protein interactions. While the 

details of transcription initiation from mRNA encoding genes by RNA polymerase II and 

associated factors are beyond the scope of this dissertation, it should suffice to ment ion 

some of the essential features of this process. Eukaryotic promoters generally consist of 

cis-acting elements close to the transcription initiation site, which help to direct gene 

expression. Many promoters contain a TAT A-box (consensus sequence TAT ANA; 

where N indicates a position that can be occupied by any nucleotide) approximately 30 

bases upstream of the transcription initiation site, which is recognized by the multi

subunit complex TFIID. Interaction of TFIID with other init iation factors correctly 

positions RNA polymerase on the DNA and allows transcription to proceed. 

Another common promoter element called the CAA T -box (consensus sequence 

CCAAT) is found between -80 and -60 nucleotides upstream of the transcription 

in itiation site for RNA polymerase II. Although not palindromic, this sequence occurs 

naturally in both orientations and is bound by either the CTF/NF- 1 or CP I proteins 

(Pearson et a!, 1 99 1 ,  Dutta et al, 1 990). 

Transcription init iation also occurs from promoters that lack a TAT A-box and/or 

a CAAT -box. These promoters frequently contain another element whose consensus 

sequence is GGGCGG. This sequence called the GC-box binds the positive transcription 
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factor S P  I .  It is functional in either orientation and can be present in one or multiple 

copies. 

In addition to these elements, eukaryotic promoters also contain other cis-acting 

elements that bind different transcription factors and thus finely regulate the expression 

of various genes. Some of the pertinent cis-acting elements and the transcription factors 

that bind them are discussed below. 

Glucocorticoid response element 

Comparison of available sequence information shows the consensus 

glucocorticoid response element (GRE) to be (T/G)GT ACAnnnTGTTCT (Beato, 1 989). 

The GRE is a transcription enhancer because it functions through heterologous promoters 

and in a relat ively position- and orientation-independent manner (Chandler et al, 1 983 ;  

Yamamoto, 1 985) .  A single GRE works when located immediately upstream of the 

TAT A-box, but multiple copies are required when the GRE' s are located at a distance 

(Strahle et al, 1 988) .  There is considerable variation in the number and location of 

GRE's .  The long terminal repeat of the murine mammary tumor virus (MMTV) gene has 

multiple GRE ' s  clustered near the transcription initiation site (Payvar et al, 1 983) .  On 

the other hand, the clustered GRE's  of the tyrosine aminotransferase gene are located 2 .5 

kb fro m  the transcription start site (Jantzen et al, 1 987). The rat phosphoenol pyruvate 

carboxykinase (PEPCK) gene has a complex glucocorticoid response unit (GRU) that 

spans I I  0 base pairs and inc ludes two glucocorticoid receptor binding elements 

designated GR J and GR2 (lmai et al, 1 990), plus two accessory factor binding elements 
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(AF I and AF2). The rat C7H gene also has a similar GRU located 220 base pairs 

upstream of the transcription start site (Crest ani et al, 1 995). 

The c lassical mechanism for glucocorticoid hormone action involves binding of 

the hormone to a cytoplasmic form of the receptor, followed by a conformational change 

("activation" or "transformation") that leads to its intranuclear translocation and binding 

to chromatin. However the steroid-free glucocorticoid receptor binds specifically to the 

GRE of M MTV in vitro. It is possible that upon binding of the hormone, the oligomeric 

complex of glucocorticoid receptor and a 90 kDa heat shock protein dissociates, leaving 

the DNA binding domain of the receptor free to bind to chromatin. One molecule of the 

receptor binds to the TGTTCT half-site of the GRE, and a second molecule then binds to 

the TGT ACA half-site in a cooperative manner. The receptor contacts the DNA through 

two zinc fingers in the DNA binding domain. The amino-terminal finger interacts 

specifically with one half of the GRE, whereas the carboxyl-terminal finger interacts with 

the DNA helix flanking the GRE consensus sequence. Transcription is enhanced, 

presumably by bringing into close proximity the transactivation domain(s) of the receptor 

with one or more components of the initiation complex. 

Thyroid hormone response element 

Unl ike the GRE, much less is known about the thyroid hormone response element 

(TRE). The proposed consensus sequence for the TRE is TCAGGTCA---TGACCTGA 

(Beato, 1 989). The "---" refers to gaps of I to 6 base pairs between the two half sites. 

This consensus sequence contains half palindromes similar to the estrogen response 

element but with different spac ing. 
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Based on amino acid and structural simi larities, the thyroid hormone receptor 

belongs to the class of steroid hormone receptors that regulate gene expression in a l igand 

dependent manner. Similar to the glucocorticoid receptor, the thyroid hormone receptor-

DNA binding is mediated by a conserved sequence motif that is thought to form a tertiary 

structure of loops or "fingers" coordinated by a metal cation like zn+2 . Whi le thyroid 

hormone can up regulate transcription through the TRE, it has also been demonstrated to 

down regulate transcription of several genes including the thyroid-stimulating hormone 

gene (Shupnik et al, 1 985).  The thyroid hormone receptor can bind both TRE as well as 

the c losely related estrogen response element. However, this binding does not result in 

transcriptional activation. Instead it causes a decrease in the level of expression. Since 

the consensus sequence of the TRE has centrally located gaps and the estrogen response 

element is a variant of the TRE with a gap of 3 base pairs, the functional consequence of 

thyroid hormone receptor binding to the estrogen response element is to decrease the 

estrogen-dependent gene expression. Thus the presence or absence of a 3 base pair gap 

in the DNA recognition sequence dictates positive or negative transcriptional control by 

thyroid hormone. 

Phorbol ester response element 

S ince phorbol esters are activators of protein kinase C (PKC), before elaborating 

on phorbol ester response sequences (PRS), I shall briefly discuss the role of 

phosphorylation in the regulation of transcription. Phosphorylation events are post-

translational modifications that affect the activity of various DNA binding proteins. They 
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not only result in a conformational change in the protein but also affect electrostatic 

interactions. There are three main levels of regulation by phosphorylation: 

Transcription factors may be sequestered in the cytoplasm, bound to inhibitory 

proteins. In response to various stimuli ,  the inhibitory protein is phosphorylated and this 

causes dissociation of the transcription factor, which now enters the nucleus and binds 

DNA to regulate transcription. An example of this type of regulation is the 

phosphorylation of the inhibitory protein IKB that causes it to dissociate from complexes 

with other transcription factors, thereby enabling these transcription factors to enter the 

nucleus and bind to chromatin (Hunter and Karin, 1 992). 

Secondly, phosphorylation can also affect the binding activity of transcription 

factors. It can increase binding, as is observed with phosphorylation of the serum 

response factor by casein kinase II ,  or decrease binding activity as seen by 

phosphorylation of c-Myb by the same casein kinase I I  (Hunter and Karin, 1 992; Luscher 

et al, 1 989). 

Finally phosphorylation could affect transactivation events mediated by a 

transcription factor. For example, the cAMP responsive binding protein when 

phosphorylated by protein kinase A in the activation domain leads to an increase in gene 

expression driven by this element (Gonzalez and Montminy, 1 989). 

Phosphorylation events are controlled by kinases, which in turn are controlled by 

receptor initiated signals conveyed by multiple cell signalling pathways. While there are 

several signalling mechanisms, this discussion will be l imited to the protein k inase C 

(PKC) pathway, since phorbol esters are PKC activators. Activation of the PKC pathway 
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is init iated by binding of ligand to receptor in the plasma membrane. Generally the 

receptor is thought to interact next with a specific heterotrimeric G protein (Gq) which 

requires bound GTP for activity. Association of the receptor with Gq causes the a 

subunit to dissociate and interact with the enzyme phosphoinositide-specific 

phospholipase C (PLCy) . PLC cleaves phosphoinositide 4,5-bisphosphate (PIP2) which 

is located in the inner leaflet of the plasma membrane, to generate inositol triphosphate 

(IP3) and diacylglycerol (DAG). Here, the pathway divides into two branches, each of 

which is crit ical to the signal l ing process. IP3. which is water soluble, diffuses into the 

cytosol and causes the release of Ca+2 from the endoplasmic reticulum. This is mediated 

by the binding of IP3 to special Ca+2 channels in the endoplasmic membrane. The initial 

rise in cytosolic calcium levels results in the movement of PKC from the cytosol to the 

cytoplasmic side of the plasma membrane. Secondly, DAG, along with 

phosphotidylserine which is associated with the plasma membrane, can bind to PKC, 

thereby increasing the affinity of the enzyme for calcium and resulting in enzyme 

activation. While calcium ionophores mimic the affects of IP3 ,  phorbol esters mimic the 

affect of DAG. DAG can also be cleaved to produce arachidonic acid, which can either 

be util ized for prostaglandin synthesis or other lipid signalling moieties. After activation 

PKC phosphorylates cellu lar proteins on serine or threonine residues. These proteins 

may themselves further phosphorylate other cellular proteins leading to potentiation of 

the signal. 

The consensus PRS identified in many genes transcriptionally activated by 

phorbol esters is TGACTCA (Deutsch et al, 1 988). It is believed that 4�-phorbol- 1 2-



www.manaraa.com

23 

myristate- 1 3-acetate (PMA), a phorbol ester, affects transcription through 

phosphorylation of transcription factors like NF-KB, c-Jun and c-Fos. AP- I and AP-2 

can also confer PMA responsiveness. 

Sterol response element 

Sterol response elements (SRE) are sequences found in the 5' -flanking region of 

genes that respond to the levels of sterols in the cell. The consensus sequence for the 

SRE is CACC(C/G)(Crf)AC (Smith et al, 1 988). This element enhances transcription in 

sterol depleted cells and is inactivated when sterols accumulate in the cell. In tissue 

culture cells the most potent inactivators of SRE are oxysterols, which are derivatives of 

cholesterol with additional hydroxy- or keto- groups that enhance their solubility.  SRE is 

also inactivated by cholesterol when it is delivered to cells in low density lipoproteins. 

Two proteins designated sterol regulatory element binding proteins I and 2 

(SREBP- l and 2) bind to SRE- 1 with a nucleotide specificity that precisely matches the 

requirement for sterol regulated transcription (Wang et al, 1 994). SREBP ' s  are members 

of the basic-helix-loop-helix-leucine zipper family of transcription factors. They bind to 

DNA either as homodimers or as heterodimers. DNA binding is mediated by the basic 

region and dimerization is mediated by the helix-loop-helix and leucine zipper structures. 

The basic helix- loop-helix region is preceded by an acidic amino-terminal region which 

is a putative transcription activation domain. 

Three alternatively spl iced forms of SREBP- l have been identified (Kawabe et al, 

1 994). They are called SREBP- l a, SREB- l b  and SREBP- J c .  The three forms show no 

functional difference in SRE- 1 binding or transcriptional activation in transfected cells. 



www.manaraa.com

24 

No alternative ly spliced forms of SREBP-2 have been identified as yet. SREBP- 1 a and 

SREBP-2 differ from other basic helix- loop-helix zipper proteins in two important 

aspects; firstly they are larger in size, and secondly they fail  to recognize the palindromic 

hexanucleotide sequences that are targets for all other basic helix-loop-helix zipper 

proteins. Instead they recognize the SRE- 1 sequence which contains a direct repeat of 

CAC. 

SREBP- 1 is synthesized as a 1 25 kDa precursor that is bound intrinsically to 

membranes of the nuclear envelope and the endoplasmic reticulum. In sterol depleted 

cells, the precursor is c leaved proteolyt ical ly to generate amino-terminal fragments of 

apparent molecular masses in the range of 66 kDa to 70 kDa that translocate to the 

nucleus and bind to SRE- 1 .  When cells are exposed to regulatory sterols, proteolysis of 

the 1 25 kDa precursor form of SREBP- 1 is interrupted and the amount of the mature 

nuclear form declines due to rapid turnover (Wang et al, 1 994) . 

S RE- 1 sequences have been found in the 5 '  -flanking sequences of genes for the 

LDL receptor (Osborne et al, 1 988), HMGCoAS (Yokoyama et al, 1 993), HMGCoAR 

(Dawson et al, 1 988),  farnesyl diphosphate synthase (Jackson et al, 1 995), squalene 

synthase (Guan et al, 1 995), fatty acid synthase (Bennett et al, 1 99 1 )  and acetyl Co A 

carboxylase ( Kawabe et al, 1 996; Lopez et al, 1 996). In addition to SRE- 1 sequences, 

the promoters for the LDL receptor and HMGCoAR also have sequences that bind to 

positive transcription factors. In the LDL receptor gene the major positive element is the 

nuclear factor S P I  (Sudhof et al, 1 987; Dawson et al, 1 988).  The HMGCoAR promoter 

contains multiple binding sites for proteins in the nuclear factor- ! (NF- I )  family (Gil et 
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al, 1 988) .  These positive e lements are required for the functioning of the SRE- 1 element. 

In the LDL receptor and HMGCoAS promoters, the SRE- 1 acts as a conditional positive 

e lement, enhancing transcription in the absence of sterols. In the HMGCoAR promoter 

the SRE- 1 also acts as a conditional negative element, repressing transcription in the 

presence of sterols. 

Rationale for study 

Cholesterol ester hydrolases are a group of ubiquitous enzymes that are present in 

many tissues and are associated with different functions, depending on location. They 

catalyze the release of free cholesterol and fatty acids from cholesteryl esters, an 

intracellular storage form of cholesterol. The major cholesteryl ester hydrolytic act ivity 

found in rat liver is associated with a unique cytosolic CEH that is appropriately located, 

rationally regulated and capable of mobil izing free cholesterol from cholesteryl ester 

stores. 

Rat l iver cytosolic CEH has been purified to homogeneity. The eDNA for this 

enzyme has been c loned and expressed. The purified enzyme has been extensively 

characterized biochemically and its physiological relevance has been well established. It 

plays a crucial role in the regulation of hepatic levels of free and esterified cholesterol 

along w ith HMGCoA reductase, cholesterol 7a-hydroxylase and acylcoenzyme 

A:cholesterol acyl transferase. While HMGCoA reductase is actively regulated at the 

transcriptional, translational and post-translational modes, cholesterol 7a-hydroxylase is 

primarily regulated at the transcriptional level. CEH has been demonstrated to be 

regulated at the post-translational level by reversible phosphorylat ion. Recently 
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regulation at the transcriptional level was also studied by measuring the steady-state 

mRNA levels under various conditions. 

While most of the data reported to date suggest that CEH is regulated at the 

transcriptional level, there is no direct evidence to support this mode of regulation. 

Therefore, isolation and characterization of the 5' -flanking portion of the CEH gene 

would enable us to understand the regulation of this enzyme at the transcriptional level. 

Specific objectives to be addressed are as follows: 

I .  Using the sequence of the CEH eDNA, isolate and clone the 5 '  -flanking portion 

of the CEH gene. 

2 .  Identify the transcription start site of  the CEH gene. 

3 .  Identify putative cis-acting elements regulating the expression of the CEH gene. 

4. Map regulatory regions in the 5' - flanking portion using reporter gene constructs 

and transient transfection assays in human hepatoblastoma HepG2 cells and 

cultured primary rat hepatocytes. 

5 .  Determine if the two culture systems used in this study have different effects on 

the CEH promoter. 
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EXPERIMENTAL PROCEDURES 

Isolation of the rat hepatic CEH promoter 

The PromoterFinder DNA Walking Kit (Clontech) was used to isolate the rat 

hepatic CEH promoter. The kit contains five "l ibraries" of uncloned adaptor-l igated 

genomic DNA fragments. The "libraries were prepared by digesting rat genomic DNA 

with 5 different restriction enzymes that recognize a 6-base site and leave blunt ends, viz. 

EcoR V, Sea I ,  Dra I,  Pvu II and Ssp I .  These fragments were l igated to a 

PromoterFinder adaptor, the unique features of which el iminates non-specific 

amplification among the general population of DNA fragments. A combination of long 

distance PCR, suppression PCR and "touchdown" PCR were then used isolate the 5 ' 

flanking portion o f  the CEH gene. 

The gene specific primer SEQP8 5 ' - T ACCCCCAAGCTGTGCACGCAGCAAG 

-3 ' ,  corresponding to positions 56 to 3 1  of the rat hepatic CEH eDNA and the anchor 

primer AP I  5 ' -GTAATACGACTCACTATAGGGC-3 ' of the PromoterFinder kit were 

used in a primary PCR with the five different "l ibraries" of genomic DNA as template. 

Primary PCR was carried out in I X Tth PCR reaction buffer (Ciontech), 10 mM each 

dNTP, 25 mM Mg(OAch, 10 11M adaptor primer AP I ,  10 11M gene specific primer 

SEQP8, I 11 1 of Tth (2U/Ill)/ Vent polymerase (2U/!1 1)/Tth Start™ Antibody (2.2 mg/11 l) 

(Ciontech) mixture (20: I :5 ratio respectively) and I 111 of each genomic "library". 

27 
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Thermal cycling parameters were : 7 cycles of 94°C for 25 seconds and 72°C for 4 min, 

32  cycles of 94°C for 25 seconds and 67°C for 4 minutes and then a 4 minute extension 

at 67°C after the final cycle. 

Primary PCR products were diluted I to 50. One 1-1 1 of the diluted products were 

used as template in a secondary PCR with nested gene specific primer PAS3 5 ' -

GCGCATTGTGGAAGGAACAAATAGCCC-3 ' ,  corresponding t o  CEH eDNA specific 

posit ions 6 to -2 1 in the 5 '  untranslated portion, and nested anchor primer AP2 5 ' -

ACT AT AGGGCACGCGTGGT -3 ' .  The secondary PCR was carried out i n  a buffer of 

the same composition as the primary PCR. Thermal cycling conditions were also 

identical to the primary PCR except that the number of cycles were reduced from 7 to 5 

for the first step and from 32 to 20 for the second step. 

The PCR products (5 1-1 I) were analyzed on a 0.6% agaroserr AE gel along with 

DNA size markers in the form of a I kb ladder. The secondary PCR products from 

"l ibraries" 3 and 4 were T A-cloned into pGEMT -Easy vector (Promega) and sequenced 

by the Dye Terminator Cycle Sequencing System. 

Construction of rat CEH promoter/luciferase reporter genes 

In order to clone the full  length promoter into the luciferase reporter vector pGL3-

Basic (Promega), PCR was performed with the primer PAS5Bglll 5 ' -

gcaagatctGATGACAGAAAAGCTCTC - 3 '  (upper case letters indicate gene sequence), 

bearing a Bgl II restriction site (underlined) and corresponding to position -37 upstream 

of the init iation ATG codon, and anchor primer AP2 which has a Mlu I restriction site. 

The 1 3 1 7  bp PCR product was then cloned into the Bgl 11-Miu I sites of pGL3-Basic to 
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give p- 1 3 1 7Luc. The remaining constructs were obtained by generation of unidirectional 

nested deletion breakpoints in p- 1 3 1 7Luc with Exonuclease III (Exo III) which can digest 

DNA from one end at a uniform rate (Henikoff, 1 987). Briefly, p- 1 3 1 7Luc was cut with 

Kpn I, to generate 3' overhangs resistant to Exo III digestion, and M lu I ,  to generate 5 '  

overhangs susceptible t o  digestion b y  Exo III (Fig.2).  The Kpn I-Miu I cut p- 1 3 1 7Luc 

was then digested with Exo III at 30°C. Aliquots were removed at I minute intervals , 

fo llowed by digestion of single stranded ends with S I nuclease. The ends were fil led 

with KJenow fragment of DNA polymerase, religated with T4 DNA ligase and 

transformed into TOP I OF' cells. All plasmids were verified by restriction digestion 

analysis and sequencing. They were purified by double banding in cesium chloride 

gradients or with Qiagen columns (Qiagen) as per manufacturers instructions. 

Identification of transcription start site 

Primer extension analysis was performed to identify the transcription start site. 

The CEH eDNA specific primer PAS3 was radiolabelled in I X  T4 polynucleotide kinase 

buffer with 3 J.!l of [y-
32P] ATP (at 3000 Cilmmol, 1 0  mCi/ml) and I 11 1 of T4 

polynucleotide kinase (8- 1 0 U/J.!I) at 37°C for I 0 min. The T4 polynuc leotide kinase was 

then inactivated by heating to 90°C for 2 min. The radio labelled primer ( I  pmol) was 

annealed to rat liver total RNA ( 1 5  Jlg), prepared by cesium chloride density 

centrifugation (Chirgwin et al), in I X  AMY primer extension buffer ( 1 00 mM Tris-HCI, 

pH 8.3, 1 00 mM KCI, 20 mM MgCh, 20 mM OTT, 2 mM each dNTP, I mM 

spermidine) with 40 � sodium pyrophosphate at 58°C for 20 min. The mixture was 
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Figure2. Strategy for generation of 5 '  deletion constructs of rat CEH promoter!luciferase 
reporter genes from p- 1 3 1 7Luc. The shaded region corresponds to the 1 3 1 7 bp 5 ' 
flanking portion of the rat CEH gene cloned into pGL3-Basic. The fu l l-length construct 
p- 1 3 1 7Luc was digested with Kpn I and Mlu I to generate 3' and 5 '  overhangs 
respectively. The Kpn I-Mlu I cut p- 1 3 1 7Luc was digested with Exonuclease III at 30°C. 
Aliquots were removed at  I min intervals followed by treatment with S I nuclease, 
Klenow fragment of DNA polymerase and T4 DNA l igase as explained in Experimental 
Procedures to obtain the 5' deletion constructs. 
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allowed to  cool at  room temperature for 1 0  min. The primer was then extended by AMY 

reverse transcriptase ( 1 . 3 U) for 30 min. at 42°C. Primer extension products were 

analyzed on an 8% denaturing polyacrylamide gel fol lowed by autoradiography for 1 6  

hrs. Radiolabelled standards were used to determine the size of the primer extension 

products. 

Culture of human hepatoblastoma HepG2 cells 

Human hepatoblastoma HepG2 cells were grown in 75 cm2 tissue culture flasks in 

Minimal Essential Medium containing L-glutamine (0.292 mg/ml),  non-essential amino 

acids ( I X),  sodium pyruvate (0. 1 1 mg/ml), penicillin ( 1 00 U/ml), streptomycin ( 1 00 

Jlglml) and 1 0% heat inactivated fetal bovine serum at 37°C in a humidified incubator in 

the presence of 5 %  C02 . Cells were seeded in 35 mm dishes with 2 ml of medium and 

grown to confluence. Medium was changed every two days until the cells were 

confluent. These cells were then used for transient transfect ion analysis. 

Isolation and culture of primary rat hepatocytes 

Primary rat hepatocytes used in this study were kindly provided by Dr. P. B .  

Hylemon (Dept. o f  M icrobiology, MCVJVCU). Hepatocytes were isolated from male 

Sprague-Dawley rats (250-300 g) using the collagenase perfusion technique of B issel and 

Guzelian ( 1 980). Prior to plating, cells were judged to be > 90% viable using Trypan 

blue exclusion. Parenchymal cells (8 .5x l 05) were plated in 1 .5 ml of Will iam' s E 

medium containing L-thyroxine ( I  J.1 M),  dexamethasone (50 nM), penic il l in ( I  00 U/ml) 

and 1 0% fetal calf serum in 35 mm Primaria culture dishes (Falcon) at 37°C in a 5% C02 
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atmosphere. After a 6 hr. attachment period, the hepatocytes were used for transient 

transfect ion analysis. 

Transient transfections 

Both HepG2 cells and the primary rat hepatocytes were transiently transfected by 

the calcium-phosphate DNA coprecipitation technique (Graham and van der Eb, 1 973) 

with the MBS mammalian transfect ion kit  (Stratagene). Specifically, 2.0 f.lg of test 

plasmid and 0.5 f.lg of pCMVB, an internal standard for the normalization of transfection 

efficiency, were incubated at room temperature for I 0-20 min. with CaCb (0. 1 25 mM) 

and BBS (N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid and buffered saline, pH 

6.95).  Culture medium in the dishes were replaced with 2 ml of fresh medium containing 

6% modified bovine serum instead of 1 0% fetal calf serum. Following addition of DNA 

suspension, cells were incubated for 3 hrs at 35°C under 3% C02. They were then 

washed three times w ith phosphate-buffered saline (PBS) and refed with appropriate 

serum-free medium with the indicated concentration of agent or vehicle. Dexamethasone 

was reconstituted in 1 00% ethanol. L-thyroxine was dissolved in a solution containing 

70% ethanol and 1 5% 6N NaOH. The solution was vortexed well and kept in a 37°C 

water bath for I 0 min . .  Fetal calf serum ( 1 5%) was then added prior to use. PMA was 

reconstituted in I 00% DMSO. Mevalonolactone and squalestatin were reconstituted in 

water. Squalestatin was kindly provided by Glaxo Research Group, Middlesex, United 

Kingdom, UB6 OHE. Media containing dexamethasone, L-thyroxine and PMA were 

replaced after 20 hrs . .  Transfected cells were incubated at 37°C under 5% C02 for 

different periods of time as indicated in the figure legends. 
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Reporter enzyme assays 

After the incubation period, both HepG2 cells and primary rat hepatocytes were 

washed twice w ith PBS ,  lysed and harvested with 200-300 11 1 of reporter lysis buffer as 

per manufacturers instructions (Promega). Luciferase activity was assayed by mixing 

room temperature luc iferase assay reagent ( 1 00 fl l) to cell extracts (5-20 fl l) also at room 

temperature in a luminometer (Lumat LB950 1 ,  Berthold) (Wood, 1 99 1 )  and measuring 

total light emission during the initial 20 seconds of the reaction. Luciferase act ivity was 

calculated as relative light units (RLU) per mg of protein. B-galactosidase activity was 

measured in 50- 1 00 11 1 of lysate using o-nitrophenyl B-D-galactopyranoside as substrate 

(Nielsen et al, 1 983) .  The product was detected by measuring the absorbance at 420 nm 

in a spectrophotometer. B-galactosidase activity was expressed as units (nmols of o

nitrophenoVmin./mg protein). Protein concentrations were determined using the Pierce 

BCA reagent (Smith et al, 1 985) .  Luciferase activity was normalized, for inter-assay 

variabi l it ies due to transfection efficiency and extract collection, by dividing the 

luciferase activity by the B-galactosidase activity. 

Statistical analysis 

Data was analyzed for statistically  significant differences by Student 's  t-test and 

p<O.O I was considered significant. 
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RESULTS 

Cloning of the rat CEH promoter 

In order to isolate the promoter for the rat CEH gene, we used the PromoterFinder 

DNA Walking Kit (Ciontech). This kit contains five "libraries" of uncloned adaptor

l igated rat genomic DNA fragments. A combination of long-distance PCR, suppression 

PCR and "touchdown" PCR were used to isolate the 5"-flanking portion of the CEH 

gene. The primary PCR with primers SEQP8 and AP I  (see experimental procedures) 

yielded products ranging from 250 bp to 4 kb in all five "libraries" (Fig .3). Primary PCR 

products were diluted and used as template for a secondary PCR with nested primers 

PAS3 and AP2 (see experimental procedures). Libraries 3 and 4 gave approximately 1 . 3 

kb and 400 bp products respectively (Fig.4 ), in addition to other smaller size products. 

The 1 .3 kb and 400 bp pieces were then T A-cloned into pGEMT -Easy vector and 

sequenced w ith the universal T7 and SP6 primers. The 1 . 3 kb product from l ibrary 3 

overlapped w ith the 400 bp product from library 4 and was identical to it in sequence. 

Analysis of this sequence revealed the presence of several putative cis-acting elements in 

the 5' -flanking region upstream from the first ATG codon. These included hormone 

response elements (TRE, GRE, IRS), liver-specific elements (TGT3, HNF) , ubiquitous 

transcription factor binding sites (NF-Y, AP I ,  SP l )  and sterol responsive elements 

(SRE). 

35 
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Figure 3 .  Agarose gel  analysis of PCR products amplified from rat PromoterFinder 
l ibraries using anchor primer AP I  and eDNA specific primer SEQP8. Primary PCR was 
performed using the protocol for the PromoterFinder kit as explained in Experimental 
Procedures. Lanes 1 -3 ,  5 and 6 correspond to PCR products amplified from libraries I ,  2,  
3 ,  4 and 5 respectively.  Lane 4 i s  a I kb DNA ladder (GIBCO BRL). 
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Figure 4. Agarose g e l  analysis o f  PCR products amplified from rat PromoterFinder 
l ibraries using anchor primer AP2 and nested eDNA specific primer PAS 3 .  Secondary 
PCR was performed using the protocol for the PromoterFinder kit as explained in 
Experimental Procedures. Lanes 1 ,  2 and 4 correspond to secondary PCR products 
amplified from l ibraries 3, 4 and 5 respectively. Lane 3 is a 1 kb DNA ladder (GIBCO 
BRL). 
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Figure 5. Nucleotide sequence of the rat CEH promoter. The DNA sequence shown 
contains 1 3 1 7  nucleotides of 5 ' -flanking DNA upstream of the ATG initiation codon. 
B ases in lower case are identical to the reported CEH eDNA sequence. The transcription 
start site identified by primer extension analysis of total l iver RNA (shown in Fig. 6) is 
indicated by an asterisk (*) .  Putative transcription factor binding sites are either 
underlined or boxed. Sequence identity of the SRE- 1 elements to the consensus SRE- 1 
sequence are indicated. AP I :  activator protein I ;  SRE- 1 :  sterol response element- ! ;  
HRE: hormone response element ; NF-Y: nuclear factor-Y ; CIEBP: CCAAT/ enhancer 
binding protein ; PRS : phorbol ester response sequence ; IRS : insu lin response sequence ; 
GRE: glucocorticoid response element ; HNF3 : hepatocyte nuclear factor 3 .  
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4 1  

HNF3 APl 
- 1 3 1 7  AAACAATAAAGGAAGTCTTAGCAAACATAAAGGATTGATTAACTAAATAT 

- 1 2 6 7 AAAACG TACAATAAT TTCTTTCAT TGTGCTAGT TCTTAAGGGAATAAAAC 
GRE / IRS / HNF3 

- 1 2 1 7 CAGAAAAACAAGAAAAATCTGTAGAAATGGAGACTGAACAATATAATTCA 

- 1 1 6 7 CAATGAACAGC GATTCACT GAAGAAATAGGGGAAAGGGAGGGTTGTAAAA 

- 1 1 1 7 TTCCTTAAGTGAAATAAGAACAGAAATACCGCATATAGGACTGAGATAAA 

- 1 0 6 7 ACAAAAGTTGTTCTGGGGGAAAT TCTCTATCATGACCATCTACAGTCTTA 
APl 

- 1 0 1 7  TGTCTTGAAGAAGACATAAT TATGCATCAAAGGGAC T TAAATTCACAGAA 

- 9 6 7 TAGTAC CTCCCTGGGCTGTAGAATACTTAT TAGTTTATCAGCTCATGGAA 

- 9 1 7  AT T T T T CCAAAATAGATAAGTTGAAGAGAT TTGATCT TAAAGGAACTAAA 
C/EBP 

- 8 6 7 GATTCCTAAAAATGAAGCAAATGATGTAGTAATGCATCCAGAGAACTTAA 
GRE / IRS / PRS 

- 8 1 7 AAATAAGTGGT TGGGTAAAACAACCAAATACACAACAGGGGAATGAAAAG 

- 7 6 7  AGGTAGCCATACACAAAAGCATGAAGAGGCTACACTGTTGGAACAGGCTA 

- 7 1 7  GCCAGCAATTCCAGAGACACACCACTTTGCTGTACAT TGTGCAT TCCCAC 

- 6 6 7  GAAGAGAGAGGCCATGTACTTCAGTAAATGTTTGAAGAATCAGT GCACAA 

- 6 1 7  G TACATT CATGGAT TATGAGGTGCCAGTAGAGTTTGTT TACCATATAAAC 

- 5 6 7  G T TATGTCCAAAGGTTCTTTCTCTGAGAGGTAAACTTCCT TGAGCCTGAG 

- 5 1 7  TATGCACCTTGCCTAGCCAAGTCACTTGACAGGAATACTGTGAAGATAAT 

- 4 6 7 T TAAGAATCGTCTGAAGGTCTG TAGGTGGTGAGGTTTCTTCCTAACT TGA 

- 4 1 7  GAATATGGAT TCTAGGAAATGCCAGTCCCAGAGAGGCTGTGAGAAATGTG 

- 3 6 7 T T CTCAC T TCCCATCTGAGCAGAGTGGGAATGAGAGGTATTCTAATATGT 
IRS / PRS SREl 7 / 8  

- 3 1 7  TCATCT T T GTAAAAGGACCCCAGACCAACCCT TGCCACTAAC TGCAGGCA 
PRS 

- 2 6 7  GCTGCCTGCTGCTGTCTGCTCTTGAGAGTTCAAGAGCAT T GAATTGAGGT 
C/EBP 

- 2 1 7  GAGAGTGCTGGAGGGAAAACTGCT TATGTAAGAAGCTGTTGGATGAGTTT 
SREl 6/8 HRE APl APl HRE 

- 1 6 7 CTAGCCfC T TG�T T A AT TG TACTGAC�GTTCApATAAAAGTG 
SPl SRE 

- 1 1 7 GGTAAACTCTTGGTG T CTT GAGATCCCAACTGGCACCCAGAGA 
* 

- 6 7  GCTCTTTGGAAGGGAGAGCTTTTCTGTCATCTTAAATTAC a t c t gt gggc 
Met Arg 

- 1 7 t a t t t g t t cc t t c c a c a a t g c g c  
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Fig.5 shows the nucleotide sequence of the cloned 1 . 3 kb of the promoter for the rat CEH 

gene as well as some of the putative cis-acting elements. 

Primer Extension Analysis 

Primer extension analysis was performed to identify the transcription start site. 

The CEH eDNA specific primer PAS3 was radiolabelled with [y-
32

P] ATP and annealed 

to rat l iver total RNA ( 1 5  llg) .  The primer was extended with AMY reverse transcriptase 

( 1 . 3 U) for 30 min. at 42°C. The primer extension products were analyzed on an 8% 

denaturing polyacrylamide ge l  fo llowed by autoradiography for 16  hrs. (Fig .6 ,  lane 2) .  

Radiolabelled standards were used to  determine the size of  the primer extension product 

( lane I ) . The primer by itself ( lane 3) did not give any product. However the primer in 

the presence of RNA gave a single 66 bp product. Comparison of the length of this 

product to the DNA sequence of the 5 '  -flanking region allowed the approximate 

posit ioning of the 5' end of the CEH mRNA at nucleotide -60 upstream from the 

in itiation ATG codon (Fig .5) .  Although no canonical TAT A-box sequences were found 

around the transcription start site, a consensus GC-box which binds the positi ve 

transcription factor SP I ,  was found 35 bases upstream from the start site (Fig .5)  

Generation of rat CEH promoterlluciferase chimeric genes 

About 1 . 3 kb of the promoter was cloned into the luciferase reporter vector pGL3-

B asic as detailed in Experimental Procedures, to generate p- 1 3 1 7Luc. The remaining 

constructs were obtained by generation of unidirectional nested deletion breakpoints in p-

1 3 1 7Luc w ith Exonuclease III. Fig.7 shows the products generated by this procedure. 
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Figure 6 .  Determination of transcription start site of rat CEH gene by primer extension 
analysis. Radio labelled primer PAS3 corresponding to regions 6 to -2 1 of the published 
eDNA sequence was annealed to total l iver RNA ( 1 5  IJ.g) and extended w ith  AMY 
reverse transcriptase ( 1 . 3 U) as explained in Experimental Procedures. DNA size 
markers are shown in lane l .  The primer extension product corresponding to 60 
nucleotides upstream of the ATG initiation codon is shown in lane 2. Radiolabelled 
primer by itself is shown in lane 3 .  
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Figure 7. Agarose gel analysis of deletion products obtained by digestion of p- 1 3 1 7Luc 
by Exonuclease III for generation of rat CEH promoterlluciferase chimeric genes. The 
ful l  length construct p- 1 3 1 7Luc (lane 1 )  was digested with Exonuclease III as explained 
in Experimental Procedures. Aliquots removed at 1 min intervals were run on a 0 .8% 
agarose gel  ( lanes 2- 1 1  ) .  S ize of the deleted products were estimated by comparison to a 
1 kb DNA ladder (GIBCO BRL). 
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Aliquots removed at I min. intervals were run on a 0.8% agarose gel along with 

l inearized p- 1 3 1 7Luc (Fig.7,  lane 1 ) . A I kb DNA ladder was run on the gel in order to 

estimate the size of the products obtained. These products were re-l igated and 

transformed into TOP I OF' cells. The plasmjds obtained were digested with restriction 

enzymes and sequenced with universal T7 and SP6 sequencing primers to deterrrune the 

exact position of the breakpoint. They were then purified by double banding in cesium 

chloride or with Qiagen columns. 

Promoter activity in HepG2 ceUs 

Determination of basal CEH promoter activity 

To deterrrune the basal promoter activity of the rat CEH gene, confluent HepG2 

cells were transfected with CEH promoter/luciferase chimeric genes shown in Fig .8 .  As 

shown in Fig.9 ful l - length and deletion clones were more active than the promoter-less 

pGL3-Basic by itself. CEH/luciferase chimeric genes downstream of, and including p-

599Luc increased luciferase reporter activity 1 .6 to 2 fold as compared to the longest 

construct p- 1 3 1 7Luc. This suggests that positive cis-acting elements are located 

downstream of nt-599 and repressor sequences upstream of nt-599. 

Effect of dexamethasone on CEH promoter activity 

Previous studies have shown that glucocorticoids can either stimulate or inhibit 

CEH activity when administered in vivo (Gandarias et al, 1 984; Grogan et al, 1 99 1  ). In 

cu ltured primary rat hepatocytes, dexamethasone was required to maintain steady-state 

CEH mRNA levels (Ghosh et al, 1 997 ; manuscript submitted). When HepG2 cells were 

transfected w ith p- 1 3 1 7Luc and treated with increasing concentrations of dexamethasone, 
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Figure 8 .  Il lustration of rat CEH/luc iferase chimeric genes used in this study. Deletion 
c lones were generated by PCR or by Exonuclease III digestion as described in 
Experimental Procedures. Numbers are relative to the ATG initiation codon of the CEH 
eDNA. 
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Figure 9. Basal promoter activity of the rat CEH/luc iferase chimeric genes transfected 
into HepG2 cells. Confluent HepG2 cultures were transfected as described under 
Experimental Procedures and incubated for 40 hrs. in serum free medium. At the end of 
the incubation, cells were harvested and reporter enzyme activities were determined as 
described. Normalized promoter activities are expressed as percentage of control (pGL3-

B asic) and represent the mean ± S. E. M. of 3 independent determinations; (*) indicates 
difference at p<O.OO I .  
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Figure 1 0. Effect of dexamethasone on the promoter activity of the CEH gene in HepG2 
cells. (A) Confluent HepG2 cultures were transfected with p- 1 3 1 7Luc and incubated for 
40 hrs. in serum free medium containing increasing concentrations of dexamethasone. 
Results are expressed as the ratio of luciferase and �-galactosidase activities and 

represent the mean ± S. E. M. of 3 independent determinations. Basal activity of p-

1 3 1 7Luc in the absence of dexamethasone was 1 453 RLU/mU �-galactosidase. (B) 
Confluent HepG2 cultures were transfected with the indicated rat CEH/luciferase 

chimeric genes and incubated for 40 hrs. in serum free medium containing either 0. 1 11M 
dexamethasone in ethanol or ethanol alone. Normalized promoter activities are expressed 
as percentage of control and represent the mean ± S. E. M. of 3 independent 
determinat ions; (*)  indicates difference at p<O.OO I .  
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promoter activity increased approximately 4.5 fo ld at 0. 1 f.!M dexamethasone (Fig . ! OA). 

In order to map the regions that respond to dexamethasone, reporter activity of each 

construct was measured in the presence of 0. 1 f.!M dexamethasone (Fig. I OB) .  Deletion of 

the promoter to nt- 1 1 90 eliminated the induction observed with the full-length construct. 

Further deletion down to nt-859 restored the activation to 2.4 fo ld. However the 

remaining constructs did not show any induction by dexamethasone suggest ing that two 

regions mediate the g lucocorticoid effect, one located between nt- 1 3 1 7  and nt- 1 1 90 and 

the other between nt-859 and nt-540. 

Regulation of CEH promoter activity by thyroid hormones 

Earlier work from this laboratory showed that L-thyroxine (T4) was required in 

conjunction w ith dexamethasone to maintain steady-state CEH mRNA levels in cu ltured 

rat primary hepatocytes (Ghosh et al, 1 997; manuscript submitted). Hoekman et al 

( 1 993) reported that the C7aH gene is activated by T4. Karam and Chiang also observed 

that T4 increases C7aH mRNA levels in HepG2 cells. HMGCoAR mRNA also 

increased in the presence of T4 although this increase resulted from stabilization of the 

mRNA rather than increased transcription (S imonet and Ness, 1 989). Therefore, we 

tested the effect of L-thyroxine on the transcriptional act ivity of the CEH promoter. As 

shown in Fig. I I  A, T4 stimulated the promoter activity of p- 1 3 1 7Luc at a concentration 

as low as 0.0 I f.!M with maximal effect ( 4 fold) at 0.0 I - 1 .0 f.! M .  T4 stimulated the 

activity of all the deletion clones tested except for p- 1 1 90Luc, for which the activity 

stayed at basal levels (Fig. ! !  B) .  Therefore, two regions respond to T4, one between nt-

1 3 1 7  and nt- 1 1 90 and the other between nt-226 and nt-37. 
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Figure I I . Effect of L-thyroxine on the promoter activity of the rat CEH gene in HepG2 
cells. (A) Confluent cultures of HepG2 cells were transfected with p- 1 3 1 7Luc and 
incubated for 40 hrs. in serum free media containing increasing concentrations of L

Thyroxine. The results are expressed as the ratio of luciferase and �-galactosidase 
activities and represent the mean ± S. E. M. of 3 independent determinations. B asal 
activity of p- 1 3 1 7Luc in the absence of L-thyroxine was 1 453 RLU/mU �-galactosidase. 
(B) Confluent HepG2 cells were transfected with the indicated rat CEH!Iuciferase 
chimeric genes and incubated for 40 hrs. in serum free medium in the presence of 1 .0 11M 
L-Thyroxine or vehicle alone. Results are expressed as the ratio of luciferase and �

galactosidase activities and represent the mean ± S. E. M. of 3 independent 
deterrrtinat ions;  (*)  indicates difference at p<O.OO I .  



www.manaraa.com

8000 

� A . � 6000 
0 -- . 

-
� 

..s 

� 4000 
I 

CQ 

� 

-€ 2000 � 
..J 
� 

0 

p- 1 3 1 7 Luc 

p l 1 90Luc 

p-859 Luc 

p-540Luc 

p-4 1 8 L u c  

p-22 6 L u c  

0 

0. 1 0.0 1 

) I L-thyroxine]  (f.!M 

1 00 

% control 

56 

1 0  

* 

B 

* 



www.manaraa.com

57 

Effect of phorbol esters on the CEH promoter activity 

Previous studies from this laboratory have shown that CEH is activated in vitro by 

reversible phosphorylation (Ghosh and Grogan, 1 989). On the other hand, the protein 

kinase C (PKC) activator, 4�-phorbol- 1 2-myristate- 1 3-acetate (PMA), decreased CEH 

mRNA by 49% in cu ltured rat primary hepatocytes (Ghosh et al, 1 997 ; manuscript 

submitted). This maximal decrease was observed after a 6 hr. incubation in PMA. In 

order to determine the involvement of a PKC-mediated signal transduction pathway in 

the regulation of CEH gene transcription, transfection experiments were performed in the 

presence of I !J M  PMA. Since long exposures to PMA depletes PKC activity in cells 

(Young et al, 1 987), a time course experiment was performed to determine the optimal 

incubation time in PMA. When HepG2 cells were transfected with p- 1 3 1 7Luc and 

exposed to I !JM PMA for different periods of time, the promoter activity was decreased 

by 34% after a 6 hr. incubation in PMA (Fig. l 2A) . Further exposure to PMA for 24 hrs. 

caused the promoter activity to increase to 1 60% suggesting that the optimal incubation 

time in PMA was 6 hrs. In order to map the regions that respond to PMA, HepG2 cells 

were transfected with various CEH promoter/luciferase chimeric genes and exposed to 

I !J M  PMA for 6 hrs. As seen in Fig. I 2B,  the promoter activity of all the deletion clones 

except for p-540Luc were repressed. The maximal decrease was observed with p-

4 1 8Luc, the activity of which was only about 36% of control, suggesting the presence of 

negative phorbol ester responsive sequences (PRS) in the region from nt-859 to nt-54 1 ,  

nt-4 1 8  to nt-227 and nt-226 to nt-37 and a positive PRS between nt-540 to nt-4 1 9 . 

Effect of agents that perturb cholesterol metabolism on CEH promoter activity 



www.manaraa.com

58 

Figure 1 2. Effect of phorbol esters on the promoter activity of the rat CEH/luc iferase 
chimeric genes in HepG2 cells. (A) Confluent HepG2 cells were transfected with p-

1 3 1 7Luc and fed w ith serum free medium containing I IJ.M PMA in DMSO or DMSO 
alone. Cells were harvested at the indicated times and reporter enzyme activities were 
determined. Results are expressed as percentage of control of normalized luciferase 
activity and represent the mean ± S. E. M. of 3 independent observations. (B) Confluent 
HepG2 cells were transfected with the indicated rat CEH/luciferase gene constructs. 

They were incubated in serum free medium with I IJ.M PMA in DMSO or DMSO alone 
for 6 hrs. and then harvested. Normalized promoter activities are expressed as percentage 

of control and represent the mean ± S. E. M. of 3 independent obsevations. (*)  indicates 
difference at p<O.OO I ;  (**)  indicates difference at p<0.005 ; (***)  indicates difference at 
p<O.O l .  
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Perturbations of cellular cholesterol metabolism by agents that increase or decrease levels 

of intracel lular cholesterol have a marked effect on CEH mRNA, protein and act ivity. 

Intravenous infusion of mevalonate, an agent known to increase levels of intracel lular 

cholesterol, caused a compensatory decrease in CEH activity and protein mass (Ghosh et 

al, 1 997; manuscript submitted) . Moreover, lovastatin, a potent competitive inhib itor of 

HMGCoAR, increased CEH mRNA 2 fo ld in cu ltured primary rat hepatocytes (Ghosh et 

al, 1 997 ; manuscript submitted). Therefore, in order to determine the sterol 

responsiveness of the CEH gene, we tested the effect of mevalonate and squalestatin, an 

inhibitor of squalene synthase and cholesterol biosynthesis, on the transcriptional activity 

of the CEH promoter. Mevalonate (2 mM) treatment for 24 hrs. repressed reporter gene 

activity of p- 1 3 1 7Luc and p- 1 1 90Luc to 26% and 1 6% of control respectively (Fig. l 3A) . 

Luciferase reporter activity was restored to basal levels in p-859Luc. However activity of 

p-226Luc was only 43% of control, suggesting that sterol response elements (SRE) are 

present between nt- 1 1 90 and nt-859, nt-4 1 8  and nt-227, and betwen nt-226 and nt-37 .  

S imultaneous treatment for 24 hrs. with 2 mM mevalonate and I 11M squalestatin 

restored the activity of p-226Luc (Fig. I 3B) ,  but failed to bring the activity of p- 1 1 90Luc 

back to basal levels. It therefore appears that strong negative SRE's  may be located 

between nt-226 and nt-37 and a positive S RE may be present between nt-4 1 8  and nt-227 . 

Inasmuch as squalestatin did not reverse the inhibition associated with p- 1 1 90Luc, it is  

possible that the region between nt- 1 1 90 and nt-859 is uniquely responsive to non-sterols.  

The positions of the variuos GRE's,  TRE's,  PRS and SRE ' s  in the rat CEH 

promoter, that were ident ified by transient transfections in human hepatoblastoma HepG2 
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Figure 1 3 . Effect of cholesterol perturbing agents on the promoter activity of rat 
CEH/Iuciferase chimeric genes in HepG2 cells. Confluent HepG2 cultures were 
transfected with the indicated rat CEH/Iuc iferase promoter constructs and incubated for 
24 hrs. in serum free medium in the presence or absence of 2 mM mevalonolactone 
alone, (A) or 2 mM mevalonolactone and I J..lM squalestatin, (B) .  Normalized promoter 

activities are expressed as percentage of control and represent the mean ± S. E. M. of 3 
separate observations ;  (* )  indicates difference at p<O.OO I ;  (**) indicates difference at 
p<0.005;  (*** ) indicates difference at p<O.O J .  
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Figure 1 4. Position of cis-acting elements in the rat CEH promoter identified by transient 
transfect ions in HepG2 cells. This figure shows the approximate positions of the various 
response elements identified in the rat CEH promoter by transient transfections in HepG2 
cells. The mapping of each individual response element is explained in the Results 
section. GRE: glucocorticoid response element ; HRE: hormone response element ; PRS: 
phorbol ester response element ; SRE: sterol response element ; TRE: thyroid hormone 
response e lement. 
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cells, is shown in Fig. 1 4. 

Promoter activity in primary rat hepatocytes 

Determination of basal CEH promoter activity 

65 

The basal CEH promoter activity in primary rat hepatocytes was determined by 

transfection of cultured hepatocytes with the different CEH promoter/luciferase chimeric 

genes shown in Fig .8 .  As  shown in  Fig. l 5 , fu ll- length and deletion clones were more 

active than the promoter-less pGL3-Basic by itself. The CEH/luc iferase chimeric genes 

downstream of, and including p-599Luc increased luciferase reporter activity 1 .6 to 4 

fold as compared to the longest construct p- 1 3 1 7Luc. This suggests that positive cis

acting elements may be located downstream of nt-599 and repressor sequences upstream 

of nt-599. 

Effect of dexamethasone on CEH promoter activity 

As shown earlier, dexamethasone at 0. 1 f.!M increased CEH promoter activity in 

HepG2 cells. The same concentration of dexamethasone was also required, in 

conjunction w ith T4 to maintain the CEH steady state mRNA levels in cultured rat 

primary hepatocytes (Ghosh et al, 1 997 ; manuscript submitted) . Moreover, the C7aH 

promoter was maximally responsive to dexamethasone at 0. 1 to 1 .0 f.!M (Crestani et al, 

1 995) .  Therefore, in order to map the regions that respond to dexamethasone in primary 

rat hepatocytes, they were transfected with different CEH promoter/luciferase chimeric 

genes and incubated for 40 hrs in the presence or absence of 0. 1 f.! M dexamethasone 

(Fig. l 6) .  The smallest construct p-226Luc increased luciferase reporter activity 4 .5 fo ld. 

The activity of p-4 1 8Luc was only 1 . 8 fo ld. However p-540Luc also induced promoter 
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Figure 1 5 . B asal promoter activity of the rat CEWluciferase chimeric genes transfected 
into primary rat hepatocytes. Cultured primary rat hepatocytes were transfected as 
described under Experimental Procedures and incubated for 40 hrs. in serum free 
medium. At the end of the incubat ion, cells were harvested and reporter enzyme 
activities were determined as described. Normalized promoter activities are expressed as 

percentage of control (pGL3-Basic) and represent the mean ± S. E. M. of 3 independent 
determinat ions ;  (*) indicates difference at p<O.OO I .  
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Figure 1 6. Effect of dexamethasone on the promoter activity of the CEH gene in primary 
rat hepatocytes. Cultured primary rat hepatocytes were transfected with the indicated rat 
CEH/Iuciferase chimeric genes and incubated for 40 hrs. in serum free medium 

containing either 0. 1 j..LM dexamethasone in ethanol or ethanol alone. Normalized 
promoter activit ies are expressed as percentage of control and represent the mean ± S. E. 
M. of 3 independent determinations; (*) indicates difference at p<O.OO I ;  (**) indicates 
difference at p<0.005. 
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activity to 3 .5  fold of control. S imilarly p- 1 1 90Luc stimulated the promoter activity 4.7 

fo ld. These results suggest that dexamethasone induces CEH promoter activity in 

primary rat hepatocytes through three regions, one located between nt- 1 1 90 and nt-859, 

one between nt-540 and nt-4 1 8  and the third between nt-226 and nt-37. 

Regulation of CEH promoter activity by L-thyroxine 

Previous work from this laboratory showed that T4 ( 1 .0 !J M) was required w ith 

dexamethasone to maintain CEH steady state mRNA levels (Ghosh et al, 1 997; 

manuscript submitted) . As shown earlier T4 stimulated CEH promoter activity in HepG2 

cells at 0.0 1 - 1 .0 !JM.  Therefore we tested the effect of T4 ( 1 .0 !J M) on the 

transcript ional activity of the CEH promoter in primary rat hepatocytes (Fig. 1 7) .  T4 

induced the promoter act ivity of p- 1 1 90 by 2.7 fold. Deleting down to p-859Luc 

decreased the induction to 1 .5 fold. The remaining constructs demonstrated the same 

level of induction as p-859Luc suggesting that two regions mediate the T4 effect in 

hepatocytes, one located between nt- 1 1 90 and nt-859 and the other between nt-226 and 

nt-37. 

Effect of phorbol esters on the CEH promoter activity 

As mentioned before, the PKC activator, PMA, decreased CEH mRNA by 49% in 

rat primary hepatocytes (Ghosh et al, 1 997; manuscript submitted). CEH promoter 

activity was also decreased by 64% in HepG2 cells after a 6 hr incubation in PMA. In 

order to determine the involvement of a PKC-mediated signal transduction pathway in 

the regulation of CEH gene transcript ion in primary rat hepatocytes, transfection 
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Figure 1 7 . Effect of L-thyroxine on the promoter activity of the rat CEH gene in primary 
rat hepatocytes. Cultured primary rat hepatocytes were transfected with the indicated rat 
CEH/Iuciferase chimeric genes and incubated for 40 hrs. in serum free medium in the 
presence of 1 .0 f.LM L-thyroxine or vehicle alone. Results are expressed as the ratio of 

luciferase and �-galactosidase activities and represent the mean ± S. E. M.  of 3 
independent determinations; (*)  indicates difference at p<O.OO I .  
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experiments were performed in the presence o f  PMA ( I  f1 M ) .  A time course experiment 

was first performed to determine the optimal incubation time in PMA. When primary rat 

hepatocytes were transfected with p- 1 3 1 7Luc and exposed to PMA for different periods 

of time, the promoter activity was decreased by 35% after an 8 hr. incubation in PMA 

(Fig. 1 8A). To determine the PMA responsive regions, hepatocytes were transfected with 

various CEH promoterlluc iferase chimeric genes and exposed to I f1M PMA for 8 hrs. 

As seen in Fig . I 8B only the promoter activity of p- 1 3 1 7Luc was repressed. Therefore a 

negative PRS may be located in the region between nt- 1 3 1 7 and nt- 1 1 90. 

Effect of agents that perturb cholesterol metabolism on CEH promoter activity 

As mentioned before perturbations of cellular cholesterol metabolism have a 

marked affect on CEH mRNA, protein and activity. Therefore, in primary hepatocytes, 

as w ith HepG2 cells, we tested the effect of mevalonate and squalestatin on the 

transcriptional activity of the CEH promoter. Mevalonate (2 mM) treatment for 24 hrs. 

repressed the reporter activity of p- 1 3 1 7Luc to 49% of control (Fig. l 9A). Luciferase 

reporter activity was restored to basal levels in p- 1 1 90Luc. However activity of p-

226Luc was only 74% of control, suggesting that sterol response elements (SRE) are 

present between nt- 1 3 1 7  and nt- 1 1 90 and between nt-226 and nt-37.  Simu ltaneous 

treatment for 24 hrs. with 2 mM mevalonate and I 11M squalestatin restored the activity 

of p-226Luc (Fig. 1 9B) ,  but failed to bring the activity of p- 1 3 1 7Luc back to basal levels. 

It therefore appears that a negative S RE may be located between nt-226 and nt-37 .  

Inasmuch as  squalestatin did not reverse the inhibition associated with p- 1 3 1 7Luc, i t  i s  
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Figure 1 8 . Effect of phorbol esters on the promoter activity of the rat CEH/Iuciferase 
chimeric genes in primary rat hepatocytes. (A) Cultured primary rat hepatocytes were 

transfected with p- 1 3 1 7Luc and fed with serum free medium containing I jlM PMA in 
DMSO or DMSO alone. Cells were harvested at the indicated times and reporter enzyme 
activit ies were determined. Results are expressed as percentage of control of normalized 

luciferase act ivity and represent the mean ± S. E. M. of 3 independent observations. (B) 
Cultured primary rat hepatocytes were transfected with the indicated rat CEH/luciferase 
gene constructs. They were incubated in serum free medium with I jlM PMA in DMSO 
or DMSO alone for 6 hrs.  and then harvested. Normalized promoter activities are 

expressed as percentage of control and represent the mean ± S .  E. M. of 3 independent 
obsevations. (**)  indicates difference at p<0.005. 
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Figure 1 9. Effect of cholesterol perturbing agents on the promoter activity of rat 
CEH/Iuciferase chimeric genes in primary rat hepatocytes. Cultured primary rat 
hepatocytes were transfected with the indicated rat CEH/luciferase promoter constructs 
and incubated for 24 hrs. in serum free medium in the presence or absence of 2 mM 

mevalonolactone alone, (A) or 2 mM mevalonolactone and I 11M squalestatin, (B). 

Normalized promoter activities are expressed as percentage of control and represent the 
mean ± S. E. M. of 3 separate observat ions ; (**)  indicates difference at p<0.005. 
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Figure 20. Positions of cis-acting elements in the rat CEH promoter identified by 
transient transfect ions in primary rat hepatocytes. This figure shows the approximate 
positions of the various response elements identified in the rat CEH promoter by transient 
transfections in primary rat hepatocytes. The mapping of each response element is 
explained in the Results sect ion. GRE: glucocorticoid response element ; PRS : phorbol 
ester response element ; SRE: sterol response element ; TRE: thyroid hormone response 
element. 
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possible that the region between nt- 1 3 1 7 and nt- 1 1 90 is uniquely responsive to non-

sterols. Figure 20 shows the positions of these cis-acting elements in the CEH promoter. 
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DISCUSSION 

This dissertation describes the isolation and characterization of the rat neutral 

hepatic CEH promoter. The rat CEH promoter is unusual in that it has no consensus 

TAT A-box sequences immediately upstream of the transcription init iation site. However 

the promoter does have a GC-box sequence, which can bind the positive transcription 

factor S P l  to drive transcription, and an inverted CCAAT box, which can bind another 

positi ve transcription factor NF-Y. In this respect the CEH promoter resembles the 

promoter for the HMGCoAR gene and the human squalene synthase gene, which also 

lack TAT A-box like sequences but utilize several GC-box sequences to drive 

transcription. The upstream regions of the promoter involved in transcriptional 

regulation were also characterized. Two different cel l  l ines were used for this purpose: a 

homologous system of rat primary hepatocytes and a heterologous system consisting of 

human hepatoblastoma HepG2 cells. 

To gain insight into the molecular mechanisms involved in the regulation of CEH, 

an in vitro primary rat hepatocyte cell culture system was optimized in this laboratory by 

Ghosh et al. In  this optimized system, insul in,  dexamethasone (0. 1 !lM) and L-thyroxine 

( 1 .0 11M) were required to maintain CEH mRN A at steady-state levels. The HepG2 cell 

l ine is commonly used to study the regulation of cholesterol homeostasis. Most 

intermediates in the bile acid pathway have been detected in HepG2 cells, and the defects 

8 1  
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previously reported were due to culture conditions. These defects have now been 

resolved. HepG2 cells exhibit an adult/terminal phenotype when grown to confluence 

and retain many cholesterol homeostatic functions (Kelly et al, 1 989; Kosaki et al, 1 993). 

They synthesize apolipoproteins B- 1 00, C-11, C-III, E, A-I, A-I I  and A-IV (Gordon et al, 

1 983 ;  Gordon et al, 1 984; Rash et al, 1 98 1 ;  Tam et al, 1 985;  Zannis et al, 1 98 1  ), express 

functional receptors for low density lipoproteins, high density l ipoproteins, insulin,  

transferrin, estrogen and asialoglycoprotein (Wu et al, 1 984; Hoeg et al, 1 985), 

synthesize and secrete lipoproteins (Rash et al, 1 98 1 ;  Tam et al, 1 985 ;  Zannis et al, 

1 98 1  ), and express sterol-27-hydroxylase, HMGCoAR, lecithin:cholesterol 

acyltransferase and ACAT (Erickson and Fielding, 1 986; Martin et al, 1 993). Hence, this 

cell l ine is also a suitable model in which to study the regulation of CEH. 

The hepatic CEH promoter was characterized both under basal conditions and in 

the presence of various physiological stimuli .  Studies in both cell l ines showed that the 

proximal 599 base sequences of the promoter contains activator elements that are l inked 

to distal repressor regions by a TC-rich hinge located between nt-780 and nt-765 , similar 

to the TC-rich hinge found in the C7H promoter. The promoter also contains putative 

cis-acting elements, including several hormone response half-elements, sterol response 

elements, ubiquitous transcription factor binding sites and l iver specific elements, some 

of which are shown in Fig. 5 .  These putative elements were identified using the GCG 

program (SITED AT A). One l iver-enriched transcription factor, CIEBP 

(CCAAT/enhancer binding protein) putatively binds to the promoter between nt- 1 94 and 

nt- 1 86, and between nt-843 and nt-835, and may be required for the developmental 
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regulation and maintenance of the expression of genes. CEH mRNA, protein and 

enzyme activity have been shown to be developmentally regulated both in male and 

female rats (Natarajan et al, 1 996; Natarajan et al, 1 997). Thus, the presence of putative 

binding sites for C/EBP and possibly DBP (albumin D-site binding protein) supports the 

"establishment v/s maintenance" model proposed in the developmental regulation of 

other l iver-specific genes such as PEPCK (phosphoeneol pyruvate carboxykinase) and 

albumin (Crestani et al, 1 995) .  

In  HepG2 cel ls  the response to glucocorticoids was seen primarily in the distal 5'  

flanking sequences. The activation, by dexamethasone, in the region between nt- 1 3 1 7  

and nt- 1 1 90 was nearly twice that seen in the region between nt-859 and nt-540. This 

region between nt- 1 3 1 7 and nt- 1 1 90 has a sequence similar to the sequence within the 

glucocorticoid response unit (GRU) of the PEPCK gene. The complex GRU of the 

PEPCK gene has 2 glucocorticoid receptor (GR) binding sites and 2 sites recognized by 

accessory factors AF I  and AF2. The sequence in the CEH promoter, 

TTTTGGTCTTTTTGTTCTTTTTAGACATCT, is located between positions - 1 1 85 to -

1 1 56. It contains an imperfect palindrome TCT AGAgatTTTTCT which closely 

resembles the consensus glucocorticoid response element (GRE) 

(T/G)GT ACAnnnTGTTCT, where n stands for any nucleotide. The consensus GRE 

directs the specific binding of the GR to DNA in the promoter region of target genes with 

one molecule of the GR binding to each of the two half-s ites in a cooperative manner. 

The 5 '  portion of this sequence, TCTGGTTTT, located between nt - 1 1 77 and nt - 1 1 85 is 

virtually identical to the recognition sequence TGTGGmT, for accessory factor AF2 in 
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the PEPCK promoter. Imai et al showed that proteins other than the GR are required for 

activation of glucocorticoid-inducible genes, and that accessory factors AF I  and AF2 do 

not act in the absence of the two GR binding regions. The AF2 element has also been 

shown to be an insulin response sequence ( IRS) which opposes the dexamethasone 

mediated stimulat ion, both in PEPCK and C7H genes. Although we did not test the 

effect of insul in on the CEH promoter in this study, it has been shown that a minimum of 

24 hrs. incubation of rat primary hepatocytes in insul in containing medium is essential to 

observe the synergistic increase in CEH mRNA by T4 and dexamethasone (Ghosh et al, 

manuscript submitted). Therefore it appears that the CEH gene may also contain a 

complex g lucocorticoid response unit with a glucocorticoid response element, an insul in 

responsive sequence and other sequences that mediate the insulin effect in the distal 

regions of the promoter. 

S imilarly, the region between nt-859 and nt-540 has the sequence 

TGTTGTGTATTTGGTTGTITI at positions -78 1  to -80 1 ,  which could also behave as 

a glucocorticoid response unit and account for the dexamethasone mediated stimulation 

in this region. 

On the other hand, three entirely different glucocorticoid response regions were 

mapped by transient transfections in primary rat hepatocytes. These glucocorticoid 

response regions were located between nt- 1 1 90 and nt-859, between nt-540 and nt-4 1 8  

and between nt-226 and nt-37. The region in the CEH promoter between nt- 1 1 90 and nt-

859 has the sequence TCTTGT between nt - 1 1 0 I and nt - 1 096. This sequence is identical 

to the human glucocorticoid response element 5 (HGRE5; von der Ahe et al, 1 985).  This 
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region also contains another sequence TCCTGA between nt- 1 08 1  and nt- 1 076 which is 

identical to the human glucocorticoid response element 7 (HGRE7; Cato et al, 1 985) .  In 

addition the region between nt-540 and nt-4 1 8  has the sequence TGAAGA between nt-

534 and nt-528 which closely resembles the core sequence of the GRE (TGT AGGA -5 ' )  

reported by Langer and Ostrowski. Finally the region between nt-226 and nt-37 contains 

the sequence GGTACTGACTGTTCA between nt- 1 42 and nt- 1 28 which resembles the 

consensus sequence for the GRE (GGT ACAnnnTGTTCT; Beato, 1 989) 

Thus, it is  evident that while dexamethasone stimulated reporter gene activity in 

both HepG2 cells and primary rat hepatocytes, the glucocorticoid response regions 

mapped were different in each cell l ine. This variation could have arisen due to the 

different cellular context and underscores the importance of a careful evaluation of the 

cellular environment (HepG2 cells v/s cultured primary hepatocytes) and the effect of the 

species (man v/s rat) prior to extrapolating the data to an in vivo condition. 

Thyroid hormones stimulated reporter gene activity in both HepG2 cells and 

primary rat hepatocytes. With HepG2 cel ls, activation regions were mapped between nt-

1 3 1 7  and nt- 1 1 90 and between nt-226 and nt-37.  Both these regions have sequences that 

partial ly  match the consensus type II steroid/thyroid hormone response element 

AG(G/T)TCA, although there were no sequences that exactly matched the consensus 

thyroid hormone response element (TRE) TCAGGTCA---TGACCTGA. Similarly in the 

case of primary rat hepatocytes, activation regions were mapped between nt- 1 1 90 and nt-

859 and between nt-226 and nt-37. The region between nt- 1 1 90 and nt-859 contains a 

sequence that partially matched the consensus type II steroid/thyroid hormone response 
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e lement, but none that exactly matched the consensus TRE. As mentioned before, it has 

been shown that T4, along with insulin and dexamethasone, was essential to maintain 

CEH mRNA in cu ltured primary rat hepatocytes. It has also been shown that the 

expression of several liver specific genes in cultures of primary rat hepatocytes is 

abolished unless hormones are added to serum-free medium. Therefore it appears that 

further studies such as mutational analysis would be essential to identify and map the 

thyroid hormone response element in the CEH promoter. 

The tumor promoter PMA repressed the transcriptional activity of the CEH gene, 

both in HepG2 cells and in primary rat hepatocytes. Whereas PMA is a known activator 

of PKC, long term exposures to PMA cause PKC to be proteolyt ically inactivated (Young 

et al, 1 987) .  A time course experiment was therefore performed to determine the optimal 

incubation time of each cell l ine in PMA. In HepG2 cells maximal inactivation occurred 

after 6 hrs. exposure to PMA. On the other hand, in primary rat hepatocytes a time 

course experiment showed maximal inactivation after 8 hrs. exposure to PMA. With 

HepG2 cells, negative PRS were mapped between nt-859 and nt-54 1 ,  nt-4 1 8  and nt-227, 

and nt-226 and nt-37. A positive PRS was also mapped in the region between nt-540 and 

nt-4 1 9 . However in primary rat hepatocytes, only a single negative PRS was identified 

between nt - 1 3 1 7 and nt - 1 1 90. PMA affects transcription of several genes through 

phosphorylation of transcription factors like c-Jun, c-Fos and NFKB . Jun/Fos 

heterodimers mediate their effects by binding to AP- I like elements. Several AP- I like 

sequences with the invariant half-site TCA and the conserved T-nucleotide that are 

crucial for the binding of Jun!Fos are present between nt-226 and nt-37. The region 
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between nt-4 1 8  and nt-227 also has the sequence TCfTGT that resembles the IRS/PRS 

of both the rat and the hamster C7H gene. As discussed previously, the region between 

nt-859 and nt-54 1 includes the sequence TGTTGTGTATTTGGTTGTTTI that resembles 

the IRS/PRS of the PEPCK gene (Imai et al, 1 990). These sites could therefore account 

for the effects observed with PMA in HepG2 cells. 

S imilarly the region between nt- 1 3 1 7  and nt- 1 1 90 has an AP- I like sequence 

TGATTAA between nt- 1 282 and nt- 1 276 that could confer PMA responsiveness in 

primary rat hepatocytes. This region also includes the sequence, 

TTTTGGTCTTTTTGTTCTTTTTAGACATCT located between nt- 1 1 85 and nt- 1 1 56, 

that resembles the IRS/PRS of the PEPCK gene (O'Brien et al, 1 99 1 )  as well as the 

IRStrGT4/HNF3 of the C7H gene (Crestani et al, 1 995). Thus it appears that signal 

transducing agents p lay a significant role in the transcriptional regulation of the CEH 

gene. Moreover, bile acids have been reported to down-regulate the C7H gene 

transcription, partly through the PKC signal transduction pathway (Stravitz et al, 1 995).  

It would be reasonable to postulate that the CEH gene is regulated in a similar fashion by 

bile acids, especially since it has been shown that taurocholate suppresses CEH mRNA 

levels in primary rat hepatocytes (Ghosh et al, 1 997 ; manuscript submitted) 

In this study known cholesterol perturbing agents were used to alter intracellular 

cholesterol levels in HepG2 cells and in primary rat hepatocytes. The agents used were 

mevalanolactone and squalestatin. Cholesterol is the major product of the mevalonate 

pathway. In addition several biologically important non-sterol products such as 

isopentenyl adenine, dolichol, coenzyme Q, heme A and prenylated proteins are also 
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produced from mevalonate (Goldstein and Brown, 1 990). Squalestatin, also called 

zaragozic acid A, is a competitive inhibitor of squalene synthase at picomolar 

concentrations and effectively lowers serum cholesterol in marmosets (Baxter et al, 

1 992). Squalene synthase catalyzes the committed step of cholesterol biosynthesis 

(Bruenger and Ril l ing,  1 986). This step is the first on the pathway to cholesterol after it 

branches to the various non-sterol products mentioned above. Therefore inhibition of 

squalene synthase by squalestatin selectively lowers only sterol end products, but does 

not deprive the cell of important non-sterol products. Sterol and non-sterol products 

regulate the expression of proteins involved in cholesterol homeostasis at multiple levels 

including transcription, translation and protein degradation. In general, sterols regulate 

gene expression at the level of transcription, while non-sterols act at the level of 

translat ion. 

Mevalonate has been shown to decrease HMGCoAR transcription rates 

(Goldstein and B rown, 1 990) and both CEH (Ghosh et al, 1 997; manuscript submitted) 

and HMGCoAR steady-state mRNA levels (Goldstein and Brown, 1 990). In primary rat 

hepatocytes cultured in serum-free medium, squalestatin decreased C7H specific activity 

to undetectable levels and also decreased its steady-state mRNA levels and 

transcriptional activity (Kinchel et al, 1 995).  In the present study, mevalonate decreased 

CEH promoter activity by 57% for the smallest construct, p-226Luc and it also decreased 

the activity of p- 1 1 90Luc by 84% in HepG2 cells. In contrast, treatment w ith 

squalestatin along with mevalonate, restored the promoter activity of p-226Luc. 

Therefore functional sterol responsive sequences must be present between nt-226 and nt-
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37 .  Two SRE- 1 like sequences are present between nt-226 and nt-37, one being 

CACCGAAC which has a 7/8 base match and the other being CACCGATC which has a 

6/8 base match with the consensus SRE- 1 sequence CACC(C/G)(C/T)AC, found in the 

promoters of HMGCoAS, HMGCoAR and the LDLR genes (Smith et al, 1 988) .  In 

primary rat hepatocytes, mevalonate decreased CEH promoter activity of p- 1 3 1 7Luc to 

49% of control and that of p-226Luc to 74%. However, treatment with squalestatin, 

along w ith mevalonate, only restored the promoter activity of p-226Luc. Therefore the 

two SRE- 1 elements identified with HepG2 cells, also appear functional in primary rat 

hepatocytes. 

Thus, the CEH gene appears to have functional sterol responsive elements similar 

to those of LDLR, HMGCoAS, HMGCoAR, farnesyl diphosphate synthase, squalene 

syntahse, fatty acid synthase and acetyl CoA carboxylase. These genes not only have 

sterol responsive elements but also different positive promoter elements that are required 

for the S RE ' s  to function. In the LDLR gene, the SRE- 1 is a conditional positive element 

that enhances transcription in the absence of sterols, but not when they are present. The 

S RE- 1 synergizes with two nearby sequences that are relatively weak binding sites for 

the positive transcription factor SP I (Dawson et al, 1 988). In vivo, The SRE- 1 and the 

two S P  1 sequences are all necessary for high level transcription in the absence of sterols. 

In the HMGCoAR promoter, the SRE- 1 sequences actively repress transcription in the 

presence of sterols. The SRE- 1 sequences are located in the midst of a cluster of e ight 

protein binding sites, six of which bind proteins belonging to a family of transcription 

factors designated the CTF and the NF- I group (NF- I ,  nuclear factor- ! ;  CTF, CCAA T-
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binding transcription factor) (Gil et al, 1 988;  Gil et al, 1 988a; Santoro et al, 1 988) .  The 

CEH promoter has potentially both SP l and NF-Y binding sites at nt- 1 04 and nt- 1 46 

respectively, that may be required for the functioning of the SRE.  

The simplest interpretation of  the data suggests the presence of a conditional 

negative e lement in the proximal 226 bases of the CEH promoter. In the presence of 

sterols,  the elements may bind a negative transcription factor (SREBP) that competes for 

binding with the positive transcription factors and thus down-regulates transcription. 

Nevertheless, in  order to determine if these octanucleotides are true sterol regulatory 

elements, it wi l l  be necessary to disrupt these elements by site-directed mutagenesis and 

then test transcription levels in the presence or absence of sterols. 

The region between nt- 1 1 90 and nt-859 in the case of HepG2 cells, and the region 

between nt- 1 3 1 7 and nt- 1 1 90 in the case of primary rat hepatocytes, considerably 

reduced promoter activity in the presence of mevalonate and the activity was not restored 

to control levels by simultaneous treatment with squalestatin. It is possible that this 

region has a cis-acting element that responds to non-sterols in the cell. The existence of a 

non-sterol response e lement and its ability to down-regulate transcription is unique and 

contrary to the w idely  held view that non-sterols only act at the post-translational level. 

Identification of the nature of the non-sterol, the non-sterol response element and its 

putative DNA binding proteins wi l l  enable us to elucidate this novel mechanism of 

regulation. 

In this study the rat CEH promoter was characterized by transient transfect ion 

assays in two different cell l ines. One of the aims of this study was to determine if the 
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culture systems used had different effects on the CEH promoter. The basal CEH 

promoter activity in the human HepG2 cells was similar to that observed in primary rat 

hepatocytes. In the presence of dexamethasone, GRE's in the CEH promotor were 

mapped between nt- 1 3 1 7 and nt- 1 1 90 and between nt- 859 and nt-540 by transient 

transfection assays in human HepG2 cells. However the GRE' s  mapped by transient 

transfection assays in primary rat hepatocytes were located between nt- 1 1 90 to nt-859, 

nt-540 to nt-4 1 8, and between nt-226 to nt-37. The glucocorticoid response sequences 

mapped in these regions were the same, suggesting that the nature of the transcription 

factor invo lved, in this case the glucocorticoid receptor, could account for the differences 

observed in the location of the glucocorticoid response regions. Alternatively, the 

interaction between the transcription factor and the transcript ion initiation complex could 

also influence the rate of transcription of the gene. This, in turn, would depend on the 

nature of the transactivating domain of the transcription factor and its proximity to the 

transcription init iation complex. Phorbol esters are activators of PKC, which in turn 

phosphorylates other proteins. As mentioned earlier, phosphorylation events are post-

translational modifications that affect the activity of DNA binding proteins in different 

ways. Thus depending on the nature of the phosphorylation event, transcription factors 

can be turned "on" or turned "off' .  The kinases involved could also be different in the 

two cell J ines and this in turn could account for the differential effects observed in the 

two cu lture systems. Final ly the SRE identified by transient transfection assays in the 

two cel l  l ines were exactly identical, suggesting that the transcription factor/s that 

respond to the level of sterols in the two cell lines are similar. Thus it appears that a more 
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detailed and specific study would be required to detect differences between a homologous 

culture system and a heterologous culture system. 

It is apparent that coordinate regulation of fatty acid and cholesterol metabolism is 

essential for balanced membrane biosynthesis and turnover, to accommodate metabolic 

fluctuations that occur during normal cellular growth. Moreover, these two important 

l ip ids are simu ltaneously required in the liver for regular, ordered assembly of very low 

density l ipoprotein particles, which deliver their lipid load of cholesterol and fatty acids 

fro m  the l iver to other sites in the body to maintain lipid homeostasis (Brown and 

Goldstein, 1 986) . Therefore, not surprisingly, the genes in these pathways are also 

apparently co-regulated. They share common cis-acting elements and specific regulatory 

proteins that bind to these elements in order to coordinately regulate the expression of 

these genes. An example of such a regulatory sequence is the sterol response element 

(SRE- 1 ) .  As mentioned before, SRE- 1 sequences have been found in the promoters of 

genes that regulate cholesterol metabolism l ike LDLR, HMGCoAR, HMGCoAS, and 

squalene synthase. Moreover, these SRE- 1 sequences have also been identified in the 

promoters of genes that regulate fatty acid metabolism like fatty acid synthase, an 

essential enzyme of fatty acid biosynthesis, acetyl coenzyme A carboxylase, the rate-

contro ll ing enzyme for fatty acid biosynthesis, and hormone sensitive lipase, an enzyme 

that plays a key role in adipocyte lipid metabolism. SREBP- 1 is the regulatory protein 

that binds to the S RE- 1 sequence in humans. The rat equivalent of SREBP- 1 was cloned 

fro m  an adipocyte cDN A expression library (Tontonoz et al. 1 993). The rat SREBP 

mRNA was induced during adipocyte differentiation in cell culture, and so it was named 
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the adipocyte determination- and different iation- dependent factor (ADD 1 ). SREBP- 1 

binds to the SRE- 1 sequence in the promoters of genes involved in cholesterol 

metabolism and regulates cellu lar sterol levels. Moreover, expression of the mRNA's  for 

fatty acid synthase and acetyl coenzyme A carboxylase have been demonstrated to be 

regulated by sterols in a manner similar to genes that encode proteins of cholesterol 

metabolism and ADD 1 is the regulatory protein implicated in the sterol responsiveness of 

these genes. S ince ADD 1 is the rat equivalent of SREBP- 1 ,  it is evident that SREBP-

1 /ADD 1 serves as a direct molecular connection between the regulation of two different 

classes of cellular lipids that are both required for cellular growth and normal lipoprotein 

metabolism. 

As mentioned before, CEH hydrolyzes cholesteryl esters to cholesterol and free 

fatty acids. This enzyme is therefore uniquely capable of regulating this aspect of both 

cholesterol and fatty acid metabolism. In this study we have identified and mapped 

functional S RE- 1 sequences in the 5' flanking portion of the rat CEH gene, to which 

S REBP- 1 or ADD 1 could bind. Presence of these functional SRE- 1 sequences in the 

CEH promoters indicates the importance of this enzyme in regulation of cholesterol 

metabolism. Previously, CEH has been shown to hydrolyze a broad range of substrates 

(Natarajan et al, 1 996a) including cholesteryl esters and triglycerides. In the current 

study we also demonstrated the presence of functional hormone response elements. 

These hormone response elements have been previously ident ified in the promoters of 

genes that regulate fatty acid metabolism. Therefore, considering the ability of this 

enzyme to release free fatty acids from different substrates, and the presence of various 
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hormone response elements in the CEH promoter, similar to those present in the 

promoters of genes that regulate fatty acid metabolism, it is apparent that this enzyme 

could also play a significant role in fatty acid metabolism. 

Thus, while coordinate regulation can be mediated by the involvement of SREBP-

I /  ADD I in the transcriptional control of fatty acid synthesis and cholesterol homeostasis, 

the abi l ity of CEH to release both cholesterol and fatty acids, the broad substrate 

specificity of this enzyme, and the presence of functional sterol response elements and 

hormone response elements in its promoter makes this enzyme a candidate for an 

additional level of coordinate regulation, which in turn could link the two pathways 

together. 

In this dissertation the isolation and regulation of the rat hepatic neutral CEH 

promoter by various physiological stimul i  has been described. It appears that the rat 

CEH gene is regulated by mult iple physiological stimul i  that fine tune the expression of 

the gene. Moreover, due to overlapping consensus sequences in the proximal 226 bases, 

compet ition for binding by transcription factors and their cross talk would eventually 

determine the level of CEH expression. Finally, determination of exact cis-acting 

sequences and the transcription factors that bind to them would enable us to have a 

greater understanding of the transcriptional regulation of the CEH gene. 
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